
Improving Coevolution by Random Sampling
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ABSTRACT
Recent developments cast doubts on the effectiveness of co-
evolutionary learning in interactive domains. A simple evo-
lution with fitness evaluation based on games with random
strategies has been found to generalize better than compet-
itive coevolution. In an attempt to investigate this phe-
nomenon, we analyze the utility of random opponents for
one- and two-population competitive coevolution applied to
learning strategies for the game of Othello. We show that
if coevolution uses two-population setup and engages also
random opponents, it is capable of producing equally good
strategies as evolution with random sampling for the ex-
pected utility performance measure.
To investigate the differences between analyzed methods,

we introduce performance profile, a tool that measures the
player’s performance against opponents of various strength.
The profiles reveal that evolution with random sampling
produces players coping well with mediocre opponents, but
playing relatively poorly against stronger ones. This finding
explains why in the round-robin tournament, evolution with
random sampling is one of the worst methods from all those
considered in this study.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.8 [Artificial
Intelligence]: Problem Solving, Control Methods, and Search—
Heuristic methods

General Terms
Algorithms, Experimentation

Keywords
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1. INTRODUCTION
For two decades coevolutionary learning (CEL) has been

perceived as a method-of-choice for learning in interactive
domains such as game playing. It has attracted substantial
interest and has been successfully applied to many games [1,
13, 12] mainly because it does not require handcrafted op-
ponents or game databases to learn from. Coevolution is a
knowledge-free method [21]: the process of strategy learning
is driven solely by playing games between individuals and by
the survival of the fittest.
Recently, Chong et al. proposed Improved Coevolutionary

Learning [5] and showed that it significantly surpasses coevo-
lutionary learning on the game of Othello. Their method is a
straightforward knowledge-free variant of evolution strategy,
in which individuals are evaluated through playing games
against random players. Since the individuals do not con-
front each other, the use of the term ‘coevolution’ for this
method is disputable, so within this study we refer to it as
Random Sampling Evolutionary Learning (RSEL).
CEL has been known for its self-adapting capabilities [1],

thus the experimental evidence that such a simple algorithm
as RSEL performs better might have surprised not only the
authors of this paper. In response, this study attempts to
understand this phenomenon and show in which respects
coevolution can outrank RSEL.
Our main contribution is demonstrating that CEL can be

as effective as RSEL at finding good Othello players with
respect to the performance measure of expected utility, but
it is better at playing against the strong opponents. We show
that this is possible for a two-population variant of CEL
that additionally uses random players. We do not limit our
attention to players’ overall performance, but also scrutinize
how they fare against opponents of different strength. To
illustrate this, we propose performance profile plots, a new
tool that gives insight into this characteristics.

2. BACKGROUND
An essential prerequisite for comparing algorithms that

learn to play games is deciding what the goal of learning is.
Simply saying that the goal is to learn the ‘best strategy’ is
vague. The best strategy could be the one that maximizes
the expected game outcome or the one that minimizes the
worst possible loss. In order to be unambiguous in this re-
spect, one has to choose a formal solution concept [9], which
precisely defines which candidate solutions are solutions to
the problem and which are not.
Ficici [9] postulated that solution concept is a part of

a problem, and that in order to solve the problem while
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avoiding coevolutionary pathologies, an algorithm must im-
plement the assumed solution concept. This holds when
an algorithm monotonically approximates the concept, i.e.,
candidate solutions do not get worse with time with respect
to an performance measure related to the assumed solution
concept. Due to the nature of interactive domains and so-
lution concepts, providing such a guarantee usually requires
an unbounded archive of candidate solutions. Thus, the
practically useful algorithms formally do not implement any
solution concept, but are designed for one of them, yet with-
out any formal guarantees of monotonic approximation. In
this spirit, de Jong proposed the MaxSolve algorithm [6],
which was designed for the Maximization of Expected Util-
ity (MEU) solution concept [24], but does not implement
it1.
MEU, as opposed to other solution concepts such as Pareto-

optimal set [7], has a natural real-valued performance mea-
sure: the player’s expected utility, which is the expected
game outcome against all possible opponents from a given
search space. This measure can be easily estimated: one
generates a number of random strategies from the search
space and calculates the average result of games played against
them. Clearly, this performance measure is consistent with
the way the individuals are evaluated in RSEL, since RSEL
was designed for MEU.
In contrast, CEL, a straightforward coevolutionary learn-

ing used recently as a control approach for RSEL [5], does
not implement any known solution concept, nor it was de-
signed for any, in particular not for MEU. From this perspec-
tive, the RSEL supremacy over CEL should not astound,
because the two algorithms have been compared using a
measure known as generalization performance in machine
learning, which is merely a different name for expected util-
ity.
However, the fact RSEL is better than CEL against an

average opponent does not imply it can beat every oppo-
nent defeated by CEL and vice versa. Opponents vary in
strength, and some methods may be more apt to produce
players that win against, e.g., strong opponents than the
weak ones. In MEU, such differences can cancel each other
or become neglected because of the very uneven distribution
of opponent strength, causing the methods to be apparently
similar. One of the objectives of this paper is to investi-
gate these deficiencies of MEU and obtain a more adequate
picture of method performance.

3. RELATED WORK
The game of Othello is a simple but challenging testbed

that has been widely used to analyze and compare differ-
ent learning methods and player representations. Most ap-
proaches to develop Othello-playing programs were based
on external domain knowledge (e.g., in the form of expert-
labeled game databases) and efficient game tree search algo-
rithms [3]. However, recent research has seen the advent of
methods that learn autonomously, without any help of exter-
nal domain knowledge. Typical examples of such methods
are CEL and Temporal Difference Learning, which were ap-
plied to Othello separately [4, 19, 28] as well as in combina-

1To be precise, de Jong uses the same name MaxSolve for
two algorithms: one with formal guarantees of monotonicity
and its bounded version without them [6].

tion [27, 22]. Our work follows this direction of knowledge-
free methods and focuses on CEL.
Apart from the learning algorithm, an important aspect

that influences the strength of Othello strategies is player
representation. A good overview of different representa-
tions and their performance is provided by the Othello Po-
sition Evaluation Function League [17]. Besides the sim-
plest weighted piece counter (WPC) representation, more
complex ones include: a symmetric n-tuple network [18], a
multi-layer perceptron (MLP) [2], and a spatial MLP [4].
League rankings indicate that of these representations, n-
tuple networks can achieve the highest performance against
the predefined heuristic player. Nonetheless, in this work
we decided to use the WPC encoding, because our goal is
to consistently confront a few learning methods in fair con-
ditions rather than to develop a player that is strong in
absolute terms.
The players trained by particular methods have to be ob-

jectively compared. Most related studies use a score against
a single benchmark opponent as a performance measure.
Typical examples of such opponents are the heuristic player
introduced by Yoshioka et al. [29], the positional and mobil-
ity strategies from Iago program [25], and the random player
which makes a random legal move in each turn. An alter-
native approach was employed by Chong et al. [5] who com-
pared CEL and RSEL with respect to their generalization
performance measured as an average score against a very
large number of random WPC-encoded players. Yet another
method is direct confrontation of the players produced by
compared methods in, e.g., a round-robin tournament [14].
In this paper, we use expected utility, head-to-head tourna-
ment, and a novel tool of performance profiles to assess the
quality of players.

4. METHODS
The conceptual framework of this study consists of three

elements: the definition of the game, the representation of
strategies, and the algorithms that learn to play the game.
We detail them in the following.

4.1 Othello and WPC encoding
The game of Othello is a deterministic, perfect informa-

tion, zero-sum board game played by two players on an 8×8
board. There are 64 identical pieces which are white on one
side and black on the other, with the colors representing
players. The game starts with the four central squares of
the board occupied with two black and two white pieces.
Players make moves alternately by placing their pieces on
the board until it is completely filled or until neither of them
is able to make a legal move. The location to place a piece
on has to fulfill two conditions. Firstly, it must be adja-
cent to an opponent’s piece. Secondly, the new piece and
some other piece of the current player must form a verti-
cal, horizontal, or diagonal line with a continuous sequence
of opponent’s pieces inbetween. After placing the piece, all
such opponent’s pieces are flipped. A legal move requires
flipping at least one of the opponent’s pieces. The objective
of the game is to have the majority of pieces on the board at
the end of the game. If both players have the same number
of pieces on the board, the game ends in a draw.
When designing an algorithm that learns to play Othello,

one of several strategy representations that vary in complex-
ity may be adopted (see Section 3). Here we focus on the
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arguably simplest of them, position-weighted piece counter
(WPC). WPC is a linear weighted board evaluation func-
tion which implements the state evaluator concept, i.e., it is
explicitly used to evaluate how desirable a given board state
is. It assigns a weight wi to a board location i and uses
scalar product to calculate the utility f of a board state b:

f (b) =
8×8∑
i=1

wibi,

where bi is 0 in the case of an empty location, +1 if a black
piece is present or −1 in case of a white piece. The players
interpret f(b) conversely: the black player prefers moves
leading towards states with a higher value, whereas lower
values are favored by the white player.
All methods considered in this paper employ WPC as a

state evaluator in a 1-ply setup: given the current state of
the board, the player generates all legal moves and applies
f to the resulting states. The state gauged as the most
desirable determines the move to be made. Ties are resolved
at random.

4.2 Random Sampling Evolutionary Learning
(RSEL)

The approach we refer to here as Random Sampling Evo-
lutionary Learning (RSEL), proposed by Chong et al. [5]
under the name of Improved Coevolutionary Learning, is a
(µ+λ) generational evolution strategy. The algorithm starts
with a population of µ randomly generated players (vectors
of 64 real-valued weights of WPC strategies in our case). In
every generation, each of the µ fittest individuals produces
λ/µ offspring through a mutation operator (thus, all popu-
lations except for the initial one consist of µ parents and λ
offspring of those parents).
Fitness calculation in RSEL is straightforward. A sam-

ple of random WPC strategies is generated, the individual
plays against each of them, and the average game result de-
termines its fitness. Thus, individual’s fitness in RSEL is an
estimate of the expected utility of the strategy it encodes.

4.3 Coevolutionary Learning (CEL)
While coevolutionary algorithms borrow the overall me-

chanics from evolutionary algorithms, their distinctive fea-
ture is an explicit use of interactions between individuals
for fitness assessment. By interacting, individuals in popu-
lation directly influence each other’s fitness, as opposed to
evolutionary algorithms, where their evaluation is indepen-
dent (and in this sense external and objective). From a few
variants of this scheme proposed in past studies, we employ
competitive coevolution, which is particularly useful when an
objective evaluation function is difficult to compute. This
is the case when learning game strategies: exact calculation
of individual’s performance requires playing a large or an
infinite number of games, thus it is infeasible. However, it
can be conveniently substituted by a rough assessment based
on interactions within a population. The outcomes of such
interactions determine fitness, called competitive fitness in
this context. By engaging players in the mutual pressure to
outperform each other, coevolutionary learning intends to
provide an adaptive learning gradient that might otherwise
be hard to obtain [23].
An important choice in designing coevolutionary algo-

rithms is the interaction scheme. For symmetrical prob-

lems such as the game of Othello, the typical approach is
one-population coevolution [20] which consists in evolving
individuals in a single population, making them compete
directly with each other. Although one-population coevolu-
tion has been intensely exploited in the context of games,
some research [15, 8] suggests that it is worth to separately
maintain two types of individuals: candidate solutions or
learners, which are expected to improve over time as evolu-
tion proceeds, and tests or trainers, which main purpose is
to differentiate the candidate solutions by defeating some of
them and losing against the others. Thereby, coevolution is
allowed to adaptively select the tests used for evaluation.
To ensure comparability with RSEL, coevolutionary learn-

ing (CEL) in this study is a (µ + λ) evolutionary strategy
equipped with competitive fitness, calculated either via a
round-robin tournament among individuals for one-population
coevolution, or by confronting all candidate solutions with
all tests in case of two-population coevolution. Therefore,
the only difference between CEL and RSEL lies in the method
of fitness assessment.

5. THE EXPERIMENT
The objectives of the experiment are twofold. Firstly, we

want to determine which of the considered methods (RSEL,
various configurations of CEL, and hybrids thereof) yields
better Othello players given a fixed computational budget.
To this aim, we employ the expected utility performance
measure and round-robin tournament. Our second goal is to
explain the anticipated differences by profiling the strategies
using opponents of varying difficulty.
In order to fairly compare the algorithms, we set them

up so that the total computational effort as well as the
computational effort per one generation are equal between
methods. Following other studies [16, 6], we identify the
computational effort with the number of games played in
interactions among individuals.
A single interaction is a double game, where both individ-

uals play one game as black and one game as white player.
In each game, one point is divided between players: the
winner gets 1 point and the loser 0 points, or they get 0.5
points each in case of a draw. Each evolutionary run con-
sists of 200 generations, and 5,000 games are played in each
of them (2,500 double games), which adds up to the total
effort of 1,000,000 games per run.
All methods start with an initial population filled with in-

dividuals whose weights are randomly drawn from [−0.2, 0.2].
The only search operator used by all algorithms is a simple
mutation that perturbs all the weights with additive noise.
The WPC weight w

′
i of the offspring is obtained by adding

a small random value to the corresponding WPC weight of
the parent:

w
′
i = wi + 0.1 · U [−1, 1],

where U [−1, 1] is a real number drawn uniformly from the
interval [−1, 1]. Weights resulting from mutation are clamped
to the interval [−10, 10]. Consequently, the space of strate-
gies we consider is a [−10, 10]64 hypercube.
Some of the setups and performance assessment methods

employ random WPC players. Each such player is obtained
independently by drawing weights uniformly from the inter-
val [−10, 10]. In the following, by ‘random player/opponent’
we mean a WPC player obtained in this way.
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Figure 1: The visualization emphasizes differences in fitness assignment among methods considered in the paper. An arrow
means that a game is played between two players.

We emphasize that all setups use the same evolutionary
operators of selection and mutation and differ only in the
way fitness is assigned to individuals. In the following sub-
sections we detail the setups of particular algorithms, and
Figs. 1a and 1b illustrate their interaction schemes.

5.1 RSEL Setup
RSEL is a straightforward implementation of Random

Sampling Evolutionary Learning algorithm described in Sec-
tion 4.2, where µ = 25 and λ = 25. During the evaluation
phase, each individual is evaluated against a set of ρ random
opponents. To fix the effort at 5,000 games per generation,
we set ρ = 50 (50×50×2 = 5000). Figure 1a illustrates this
configuration. We emphasize that a collection of random
opponents is drawn anew in every generation.

5.2 1CEL Setups
1CEL is a one-population coevolutionary algorithm which

implements the competitive (µ + λ) evolutionary strategy
scheme outlined in Section 4.3. All individuals in popula-
tion play double games with each other (round-robin tour-
nament). In each generation, µ = 25 best performing strate-
gies produce via mutation λ = 25 children. The nature of
this competitive fitness assessment is illustrated in Fig. 1a.
The second method, 1CEL-RS, is a hybrid of 1CEL and

RSEL that combines the competitive fitness with random
sampling. Technically, each individual is evaluated on the
basis of double games with 25 randomly selected individu-
als from the population (as in 1CEL) and ρ = 25 random

opponents (as in RSEL). This configuration is illustrated in
Fig. 1a.

5.3 2CEL Setups
2CEL is a two-population competitive coevolutionary al-

gorithm in which individuals are bred in two separate pop-
ulations. The first population contains candidate solutions,
while the second one maintains tests, which here take the
form of opponent strategies that challenge candidate solu-
tions. The fitness of a candidate solution is the sum of points
it obtains in double games with all tests.
Tests, in turn, are rewarded for making distinctions be-

tween candidate solutions [11]. The test’s fitness is the
weighted sum of points it receives for making distinctions.
A test makes a distinction for a given pair of candidate solu-
tions if the games played with it give different outcomes. To
maintain diversity in the population, we employ competitive
fitness sharing [26]; each point for distinction is weighted by
the inverse of the number of tests that make this distinc-
tion. Consequently, genetic novelty is preferred, since tests
that make unique distinctions are rewarded more than the
ones that make the same distinctions as other tests in the
population.
To guarantee fair comparison among the studied algo-

rithms, the selection scheme in the population of candidate
solutions remains the same as in 1CEL. The population of
tests uses (µ + λ) evolutionary strategy, where µ = 25 and
λ = 25. Figure 1b illustrates how the fitness is assigned to
a candidate solution in 2CEL.
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Table 1: Performance comparison of best-of-run players. All
t-Student tests have been performed against RSEL.

Algorithm Performance [%] t-value p-value
RSEL .86.46 ± 0.25 - -
2CEL-RS .86.44 ± 0.26 -20.30 3.73 × 10−54

1CEL-RS .83.63 ± 0.37 -12.63 1.29 × 10−28

1CEL .80.34 ± 0.54 -20.53 6.62 × 10−55

2CEL .79.97 ± 0.58 -0.09 0.46

The last method, 2CEL-RS, is 2CEL enhanced by ran-
dom sampling. While the population of candidate solutions
still consists of 50 individuals, the population of tests is lim-
ited to 25 individuals. The fitness of a candidate solution
is the sum of points obtained in 25 double games with the
tests and 25 double games with the random opponents (cf.
Fig. 1b).

6. RESULTS
We performed 120 runs for each method. In the following,

the best-of-generation individual is the individual with the
highest fitness in the population. By the best-of-run player
we mean the best-of-generation player of the last generation.

6.1 Performance Comparison
To assess the individuals we use the approximated mea-

sure of expected utility. To calculate it, we let every in-
dividual play 25,000 double games (50,000 games in total)
against random WPC players, obtained by drawing weights
uniformly from the interval [−10, 10]. With one point for
winning the game, zero for losing, and 0.5 for a draw, the
expected utility of a player is in the range of [0, 1], but for
clearer presentation we report it in percent points. From
now on, the term ‘performance’ refers to this measure.
Figure 2 shows how the performance of each method changes

as a function of computational effort (which is here propor-
tional to the number of generations). Each point on the plot
is the performance of method’s best-of-generation player av-
eraged over 120 runs. Table 1 compares the methods in
terms of the average performance of the best-of-run indi-
viduals accompanied by 95% confidence intervals, t-Student
test values and p-values. The two-tail t-test compares RSEL
with other methods.
Our results confirm Chong’s et al. conclusion that evolu-

tion with fitness purely based on random sampling (RSEL)
is significantly better than one-population coevolution [5].
The new result is that it is also much better than two-
population coevolution. Although the difference between
2CEL and 1CEL is not statistically significant and some
parts of the curves in Fig. 2 overlap, the comparison of se-
tups that mix coevolution with random sampling, i.e. 2CEL-
RS and 1CEL-RS, shows that separating learners from train-
ers in two-population setup pays off with respect to the ex-
pected utility.
The 1CEL-RS setup can be viewed as a hybrid of RSEL

and 1CEL, thus it is not surprising to see its performance
falling in between those two [5]. What is not obvious, how-
ever, is that a similar effect is cannot be observed in the
case of 2CEL: RSEL and 2CEL-RS produce equally good
strategies on average.
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Figure 2: Comparison of methods over time in terms of
expected utility performance measure.

However, while having roughly the same expected per-
formance against opponents, do 2CEL-RS and RSEL differ
in their capability of winning against opponents of different
strength? In an attempt to answer this question, we will
break down the performance value with performance pro-
files.

6.2 Analysis with Performance Profiles
To better understand characteristics of particular meth-

ods we devise performance profile. This tool gives us better
insight into how a strategy copes with opponents of different
strength.
To prepare a performance profile, we randomly generate

500,000 players (opponents) by sampling WPC weights uni-
formly and independently from the [−10, 10] interval. Next,
the performance of each opponent is estimated by play-
ing 1,000 double games with random WPC strategies. The
range of possible performance values, i.e., [0, 1], is then di-
vided into 100 bins of equal width, and each opponent is
assigned to one of these bins based on its performance.
Building the opponents database is computationally ex-

pensive: here it required playing 500,000 × 1,000 × 2 =
1,000,000,000 games. However, once created, it can be reused2.
The ensemble of opponents partitioned into bins forms

the basis for building the profile. The assessed player plays
double games with all the opponents from each bin, and the
average game outcome is plotted against the bins.
We apply performance profiling to inspect the best-of-

run individuals of all algorithms considered in this paper
and present them in Fig. 3. Since we have 120 runs per
method, we average the profiles over 120 best-of-run play-
ers. A point of coordinates (x, y) in a plot means that the
2The data and Java code for creating performance profiles
for Othello are available at http://www.cs.put.poznan.pl/
wjaskowski/projects/performance-profiles.
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Figure 3: Performance profiles of five analyzed methods.
Each point (x, y) means performance y over opponents of
performance x. The whiskers mark 95% confidence interval.

best-of-run individuals have on average performance y when
playing against opponents of performance x. For example,
the performance of RSEL is about 90% for opponents with
performance of 40%.
The whiskers in the plots mark 95% confidence intervals.

Notably, they tend to widen towards the ends of plots. This
is because it is hard to randomly generate opponents that
are very strong or very weak, so the extreme bins contain
relatively few opponents. For the same reason we removed
the points with confidence intervals that were larger than
20% or were computed on a basis of 120 or fewer double
games.
The decreasing trend in each data series confirms an ob-

vious fact that it is harder to win with stronger opponents
than with the weaker ones. We can also see that some meth-
ods are dominated by others, e.g., 1CEL and 2CEL are dom-
inated by 2CEL-RS. Although 2CEL-RS is most of the time
significantly better than 1CEL-RS (which is why it has a
much higher performance), the difference between them de-
creases with the increasing opponent strength and it is hard
to tell which one fares better against the strongest players.
What is however clearly visible in the plots is that while

RSEL copes well with weak opponents (performance similar
to 2CEL-RS), it fares worse when confronted with stronger
ones (performance worse than 1CEL-RS and 2CEL-RS). In-
terestingly, 1CEL-RS has a complementary characteristics,
so its plot and RSEL’s plot cross at roughly 68% opponent
strength. However, since the strong opponents are infre-
quent, the advantage of 1CEL-RS over RSEL on them can-
not compensate its inferior position when it comes to weaker
opponents, and its overall performance is still worse (cf. Ta-
ble 1).

Table 2: The results of the round-robin tournament (per-
cents).

Algorithm 1CEL-RS 2CEL-RS 1CEL RSEL 2CELOverall
1CEL-RS - 53.4% 53.3% 56.3% 56.7% 54.9%
2CEL-RS 46.6% - 51.2% 53.2% 53.9% 51.3%
1CEL 46.7% 48.8% - 51.8% 52.7% 50.0%
RSEL 43.7% 46.8% 48.2% - 52.0% 47.7%
2CEL 43.3% 46.1% 47.3% 48.0% - 46.2%

6.3 Round-Robin Tournament Comparison
Our final experiment is a round-robin tournament among

all methods. This assessment determines a relative ranking
of methods [13] by playing matches between teams of play-
ers. Every team consists of 120 best-of-run players produced
by an algorithm. Thus, a single match in the tournament in-
volves 120 × 120 = 14400 double games. Winning all games
gives the round-robin-performance of 100%.
Table 2 presents the results of the tournament. Evolu-

tionary learning with random sampling loses to all other
methods except 2CEL in head-to-head matches and its ag-
gregated round-robin-performance is significantly lower than
1CEL-RS, 2CEL-RS, and 1CEL. However, the difference be-
tween RSEL and 2CEL is too small to conclude anything for
sure. Adding a random sampling component improves both
one- and two-population coevolution (1CEL-RS vs. 1CEL
and 2CEL-RS vs. 2CEL). Also, one-population variants
are consistently better than two-population ones (2CEL vs.
1CEL and 2CEL-RS vs. 1CEL-RS). 1CEL-RS wins against
all other algorithms and is clearly the best in terms of round-
robin performance.
The ranking in terms of expected utility presented in Ta-

ble 1 is different than the one resulting from the round-robin
tournament. Do the rankings contradict each other?
In order to explain this discrepancy, notice that, con-

trary to the previous assessments which involved random
opponents, here each individual in a team plays only with
the players from the opponent teams, and those players
(co)evolved to be strong. According to Table 1, the per-
formance of team members is in the range of 79–87% and,
as we have seen in Section 6.2, the methods differ in per-
formance profiles. Figure 3 does not provide reliable data
on how methods behave for very strong opponents because
they are too scarce, but the trends are evident and can be
extrapolated. As we already pointed out, RSEL, for in-
stance, matches the performance of 1CEL-RS at opponent
strength of 68%, where their curves cross, and then keeps
on heading downwards. This explains why it ranks low in
the round-robin tournament.
Similarly, performance profile plot shows that 1CEL-RS’s

curve is the most leveled, matching 2CEL-RS’s plot at around
75% opponent performance and, presumably, surpassing it
for the stronger opponents. We hypothesize that this may
account for the former one scoring 3.6% more in the final
tournament ranking.

7. DISCUSSION
Most of our findings confirm the results reported by Chong

et al. [5]. When gauged with the performance measure of ex-
pected utility, evolutionary learning with random sampling
indeed provides significantly better results than simple one-
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population coevolution. However, as we have shown, this
comes at a price: performance profiles reveal that RSEL,
while being able to play well with easy opponents, has trou-
bles when facing the stronger ones. This was further con-
firmed in the round-robin tournament, where RSEL, faced
only with the highly-skilled opponents evolved by competi-
tive methods, finished in the last but one place.
The beneficial role of hybridization with random sampling

is puzzling. As we found out when preparing the perfor-
mance profiles, drawing a strong opponent at random is very
unlikely. From the 500,000 random opponents drawn, all
had performance lower than 80%. Moreover, most of them
are mediocre, so they cannot be challenging for the individ-
uals that were evolving in the population for many genera-
tions. Thus, it is not obvious how they could form a use-
ful training gradient. Yet coevolution obtains better results
when coupled with random sampling. This effect is espe-
cially interesting for 1CEL-RS, which has indisputably won
the round-robin tournament. Explaining this effect in detail
requires further investigation, but we speculate that random
sampling might play a role in preventing forgetting [10], a
coevolutionary pathology that hampers learning.
Despite the fact that 1CEL-RS and 2CEL-RS rank among

the top three algorithms both for the expected utility crite-
rion and the round-robin tournament, we observe a trade-off
of their performance against weak and strong players. This
trade-off manifests in the performance profile plot (Fig. 2),
but we can alternatively visualize it by plotting all meth-
ods against two objectives: the (estimated) expected util-
ity and the round-robin-performance. Figure 4 shows that
no method dominates all others on both criteria, however
2CEL-RS is close to dominate RSEL, 1CEL dominates 2CEL,
and remarkably, coevolution with random sampling domi-
nates coevolution without it.
This raises a question: which performance measure (and

which solution concept in general) is more practically useful?
Are strategies that play well on average preferable to those
which can cope with strong opponents, but sometimes lose
with the weak ones? Unfortunately, this question cannot be
answered without assuming certain probability distribution

of strategies as they occur in the real world, which is in
general difficult.

8. CONCLUSIONS
This study presented an evidence that coevolution can

offer advantage over evolution with random sampling for
learning game strategies. In the particular case of the game
of Othello and WPC strategy representation, this advantage
was observable in head-to-head confrontation of generated
solutions. An algorithm that autonomously and dynami-
cally redefines its own fitness function (CEL) can produce
strategies which are better in such confrontation than those
produced by an algorithm that relies on (approximately)
stationary fitness function (RSEL). However, pure coevolu-
tion is not sufficient to attain that, and additional means
are required (here: two-population setup and random oppo-
nents). It remains to be seen whether analogous conclusions
may be drawn for interactive domains other than Othello.
To provide detailed insight into the performance of players

considered in this study, we proposed performance profiles.
We used this straightforward tool to explain, among oth-
ers, the differences between the results of the round-robin
tournament and the comparison in terms of expected util-
ity. However, it can be potentially useful also for explain-
ing other phenomena, the dynamics of the search process,
behavior of other algorithms, and helping design the new
ones. Nevertheless, we must admit that in the preliminary
variant presented here this tool suffers from certain limita-
tions. First and foremost, the very strong (or very weak)
opponents are hard to generate randomly. As a result, per-
formance profile plots show only a partial picture and their
reliability on the extremes of performance is low. This could
be improved by adding players of certain performance, pos-
sibly generated in a non-random fashion (e.g., the strategies
learned by CEL or RSEL), at the price of introducing a bias
of unknown characteristic. Secondly, more powerful strat-
egy representations, like n-tuples [18], may provide players
with performance near 100% against all random opponents.
In such cases, performance profiles would cease to differenti-
ate the methods, so it is hard to anticipate how useful they
would be in such contexts.
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