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ABSTRACT
SZ-Tetris, a restricted version of Tetris, is a di�cult rein-
forcement learning task. Previous research showed that,
similarly to the original Tetris, value function-based meth-
ods such as temporal di�erence learning, do not work well for
SZ-Tetris. The best performance in this game was achieved
by employing direct policy search techniques, in particular
the cross-entropy method in combination with handcrafted
features. Nonetheless, a simple heuristic hand-coded player
scores even higher. Here we show that it is possible to equal
its performance with CMA-ES (Covariance Matrix Adap-
tation Evolution Strategy). We demonstrate that further
improvement is possible by employing systematic n-tuple
network, a knowledge-free function approximator, and VD-
CMA-ES, a linear variant of CMA-ES for high dimension op-
timization. Last but not least, we show that a large system-
atic n-tuple network (involving more than 4 million param-
eters) allows the classical temporal di�erence learning algo-
rithm to obtain similar average performance to VD-CMA-
ES, but at 20 times lower computational expense, leading to
the best policy for SZ-Tetris known to date. These results
enrich the current understanding of di�culty of SZ-Tetris,
and shed new light on the capabilities of particular search
paradigms when applied to representations of various char-
acteristics and dimensionality.
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1. INTRODUCTION
Evolutionary algorithms (EAs) implement a generate-and-

test approach: candidate solutions are randomly perturbed
and only then evaluated. This distinguishes them from the
gradient-based approaches that modify candidate solutions
in a directional way and so attempt to reduce the discrep-
ancy between the current and the desired search state. By
exploiting problems in such a way, the gradient-based meth-
ods may be more e�cient at finding well-performing candi-
date solutions. On the other hand, by strictly following
gradient when updating candidate solutions, they bias the
search and may fail to exploit the uncharted parts of the
search space. EAs are less biased in this sense and may so
compensate for their inability to utilize the information on
gradient.

The interplay between these aspects is particularly rele-
vant for reinforcement learning (RL), the study of agents
that issue actions that change the states of an environment
and learn from the resulting delayed rewards. Within RL,
EA-based techniques fall into the category of direct pol-
icy search, while examples of gradient-based learning tech-
niques can be found among value function-based methods
(which attempt to approximate the unknown underlying
value of particular states). Value function-based methods
prove spectacularly good in some problems (e.g., Backgam-
mon [22]), while direct policy search fares very well in the
others (e.g., Othello [8]).

Understanding the causes of these performance di�erences
has been an important part of research agenda in RL [9].
There is partial evidence for many factors being involved
here; Szita [16] suggested that policy representation (rely-
ing on function approximation), the presence of randomness,
environment observability, and training regime are, among
others, the critical factors. In this study, we focus on policy
representation and, more specifically, on its dimensionality,
meant as the number of variables/parameters that charac-
terize candidate policies.

Value function-based methods derive an update rule for
every variable of an agent’s policy, and are by this token
relatively insensitive to the their number. For instance, in
some studies on Othello, the temporal di�erence learning
algorithm, the classical value function-based RL method,
proved very e�cient when learning policies encoded by thou-
sands of parameters [20]. At the same time, the results in-
dicated inferior performance of EAs, which traversed the
space of candidate solutions more slowly using conventional
evolutionary search operators. However, we are currently
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witnessing the advent of EA techniques that are designed
to handle high numbers of dimensions while capturing the
interdependency between them. A notable representative
of this trend is the CMA-ES (Covariance-Matrix Adapta-
tion Evolution Strategy, [7]) approach; in particular, its re-
cent variant, VD-CMA-ES [1], which avoids estimation of
the entire covariance matrix and is thus particularly suit-
able to high-dimensional spaces. In this light, it is justified
to ask: are these new generation EA techniques, when ap-
plied to RL problems, capable of equaling the performance
of the value function-based methods for policy representa-
tions with a large number of parameters?

In this study we attempt to answer this question for SZ-
Tetris [17], a di�cult single-player stochastic game, which
is a constrained variant of Tetris, one of the most common
yardsticks in RL. Our contribution consists in bringing the
evidence that CMA-ES is indeed able to attain the perfor-
mance of value function-based methods, albeit at a larger
computational cost. We also demonstrate the superiority
of high-dimensional, domain-independent policy representa-
tions (systematic n-tuple networks) to handcrafted board
features. Finally, using such a high-dimensional representa-
tion, we produce the best SZ-Tetris player to date, solving in
this way the challenge posed recently by Szita and Szepesvári
[17]:

Challenge #1: Find a su�ciently good feature set
(semi-automatically or fully automatically). A
feature set is su�ciently good if CEM (or CMA-
ES, or genetic algorithms, etc.) is able to learn
a weight vector such that the resulting preference
function reaches at least as good results as the
hand-coded solution.

2. SZ-TETRIS

2.1 Game description
Tetris is a popular single-player stochastic video game cre-

ated by Alexey Pajitnov in 1984. The game is played on
a 10 ◊ 20 board. During the game random tetrominoes –
shapes composed of four connected square blocks – appear
one-by-one at the top edge of the board and fall down the
board. The objective of the game is to keep the board possi-
bly clear by rotating and moving tetrominoes sidewise and so
forming horizontal lines of blocks without any gaps. When
at least one such line is created, it disappears, and the blocks
above (if any) move down by the number of lines cleared.
A point is awarded for each cleared line and the game ends
when a tetromino extends beyond the top of the board when
set in place.

The original Tetris had been a popular benchmark in RL
[16], but it became hard to study when the best policies
started achieving the level of tens of millions cleared lines
on average [23]. Learning and evaluating such controllers is
computationally expensive.

This is why Szita and Szepesvári [17] proposed to study
SZ-Tetris, a variant of the original Tetris constrained to
tetrominoes ‘S’ and ‘Z’. SZ-Tetris was originally introduced
by Burgiel [4] to prove that every Tetris game eventually
ends with probability 1, regardless of the players’s actions.
‘S’ and ‘Z’ tetrominoes are the most di�cult ones to handle,
which makes SZ-Tetris much harder than the original game.
As a result, the computational cost of a single simulation

is significantly lower. This facilitates experimentation and
allows to measure performance of complex strategies with
a reasonable accuracy as Tetris games typically have huge
variance.

There are 210◊20 states in both Tetris and SZ-Tetris. In
the latter one, regardless of the type of tetromino available,
there are 17 possible actions in each move (9 vertical + 8
horizontal).

2.2 A Hand-Coded Controller
Surprisingly, from the computational intelligence point of

view, the best SZ-Tetris controller to date has been a hand-
coded player proposed as a baseline for other approaches
[17]. The controller first divides the board into 5 blocks,
each consisting of two adjacent columns. Throughout the
game, the ‘S‘ tetrominoes are placed vertically in the first
or second block, while the ‘Z‘ tetrominoes in the fourth or
fifth block. The type of tetrominoes to be dropped in the
third, middle block alternates with game progress. Initially,
the player drops there the tetrominoes of the same type as
the first tetromino that appeared in the game. Once the
highest column on the board exceeds the height of 161, the
type of tetrominoes for the middle block is flipped. The
policy always drops a tetromino into the least occupied block
of the compatible tetromino type.

According to Szita and Szepesvári [17], this heuristics, re-
ferred to in the following as Hand-coded, clears 182 rows on
average, which is consistent with our implementation that
achieves a score of 183.61±1.4 (95% confidence interval),
with the median score of 191.0.

2.3 State-Value Function and Action Selection
In every iteration of the game, given a state s of the board

(a vector of 10 ◊ 20 = 200 bits) and an incoming tetromino,
a SZ-Tetris policy needs to choose the action (move) to be
taken. As in many other reinforcement learning problems,
one defines to this aim a function approximator f that cap-
tures the preference of board state in a real number. The
direct afterstates of s are generated by simulating each of the
17 possible moves: 9 columns for a 2 ◊ 3-tetromino dropped
vertically, and 8 when rotated to 3 ◊ 2 and dropped hori-
zontally. Then, f is applied to each such afterstate, and the
move leading to the state with the highest f is applied. Ties
on f are resolved at random.

Note that, depending on the learning algorithm, f can
be either a state-value function, which approximates the ex-
pected score from the given state or just a state-preference
function, which absolute value has no interpretation.

Either way, the function f is the key determinant of policy
performance and is usually based on a set of board features,
either manually designed or defined in a generic, knowledge-
free manner. The following subsections describe the classi-
cal expert-designed SZ-Tetris features and our proposal of
knowledge-free features. Both these representations will be
used in the experiments.

2.3.1 ”Classical” Bertsekas & Ioffe (B&I) Features
In their early work on Tetris [2], Bertsekas et al. pro-

posed the following set of features „

i

(s) of a board state
(afterstate) s:

1This number was wrongly reported to be 15 in [17], but
correct value of 16 appears in the code attached to the paper.



• The height h

k

of the kth column of the board, k =
1, . . . 10,

• The absolute di�erence d

k

= |h
k

≠ h

k+1| between the
heights of the kth and the (k + 1) column, k = 1, . . . 9,

• The maximum column height max

h

,

• The number of ‘holes‘ on the board.

In total, this gives rise to 10+9+1+1 = 21 features, and the
state-value function f is defined as their linear combination:

f(s) =
21ÿ

i=1

w

i

„

i

(s),

Thus, an algorithm that learns to play SZ-Tetris using the
B&I features searches a 21-dimensional space of weights w

i

.
We find it important to note that the implementation used

by Szita and Szepesvári [2] involved an additional end-game
heuristic that was not explicitly described in the paper: the
actions that immediately lead to terminal states are avoided
unless there no other possibilities. Our preliminary experi-
ments indicated that this seemingly minor modification has
critical impact on performance when using B&I features2, so
we include it also in the implementation used in this study.

2.3.2 Systematic n-Tuple Network
An n-tuple network is a combinatorial structure originally

proposed by Bledsoe and Browning [3] for pattern recog-
nition and recently successfully adopted for Othello [12],
Connect-4 [25] and the puzzle game 2048 [18]. It consists of
m n-tuples, each representing a single board feature. The
ith n-tuple consists of a list of n distinct board locations
(loc

ij

)
j=1...n

and an associated lookup table LUT

i

that enu-
merates all possible states of the selected locations. For
games with binary states of individual locations (like SZ-
Tetris), the lookup table thus consists of 2n entries, each
holding a real number. Given a board state, the value of
the feature is the entry of the lookup table addressed by
the combined states of the board locations covered by the
n-tuple. To keep the size of the lookup table within reason-
able limits, n is typically low.

Formally, an n-tuple network implements a state-value
function f as a sum of values returned by individual n-tuples
f

i

for a given state s:

f(s) =
mÿ

i=1

f

i

(s) =
mÿ

i=1

LUT

i

[index (s
loci1 , . . . , s

locin )] ,

index (v) =
|v|ÿ

j=1

v

j

c

j≠1
,

where s

locij is a board value at location loc

ij

, v is a sequence
of board values at those locations (the observed pattern),
and c is the number of possible values in a board location,
so that 0 Æ v

j

< c for j = 1 . . . |v|. In the case of Tetris,
c = 2 and values in v are 0 or 1 for empty and occupied
locations respectively. See Fig. 1 for an illustration.

N -tuple networks mitigate the combinatorial explosion
while capturing the utility of particular combinations of board
2Without it, we were not able to exceed 50 points with B&I
features.

0

1 2

3

LUT

0123 value

0000 3.04
0001 �3.90
0010 �2.14
...

...
1100 �2.01
...

...
1110 6.12
1111 3.21

Figure 1: A 2◊2-tuple on a small Tetris board. Ac-

cording to the values in its lookup table, for the

given board state it returns ≠2.01.

states in a way that cannot be realized by the simpler linear
representations.

Given the overwhelming number of n-ary combinations
that can be formed from a board in most games, the lo-
cations of n-tuple are often drawn at random [11]. How-
ever, recently, it was found out that systematically plac-
ing n-tuples on the board leads to better performance [8]
for Othello and avoids introducing additional variation into
policy performance (the primary source of variation being
game stochasticity and, in multi-player games, the oppo-
nents). Therefore, in this study we systematically cover the
SZ-Tetris board by placing a same-shaped square n-tuples
in all possible locations while allowing for overlaps. We con-
sider two n-tuple shapes: 3◊3 and 4◊4. The former case
gives rise to (10 ≠ 3 + 1)(20 ≠ 3 + 1)/2 = 72 unique n-
tuple locations3. The lookup table of each such n-tuple has
23◊3 = 512 entries, so the total number of weights of such a
systematic n-tuple network amounts to 36 864. In the latter
case, there are 136 unique 4 ◊ 4-tuple locations, and the to-
tal number of weights is thus 136◊216

/2 = 4 456 448. These
are the numbers of parameters that define the strategies to
be learned in Section 3.

Note that, with the n-tuple network, we did not use the
end-game heuristic mentioned in Section 2.3.1. The pre-
liminary tests have shown that it is not necessary for this
function approximator.

Other approaches to SZ-Tetris
As we mentioned in Section 2.2 the best controller for SZ-

Tetris was hand-coded by Szita and Szepesvári [17] and its
mean score is about 183. In the same work, the authors
experimented with learning weights for, among others, B&I
features (see Section 2.3.1) and its discretized variants, but
their best learned agent scores only 133 on average. More
recently, Faußer and Schwenker [5] approached the game
with a voting committee of TD(⁄) agents achieving the av-

3The division by 2 is because we take board symmetry into
account: given any two vertically mirrored afterstates, there
is no rationale to prefer any of them, so f should grant them
with the same value.



erage score of 150. Importantly, all these studies relied on
hand-coded knowledge-based representations.

3. EXPERIMENTS AND RESULTS

3.1 Direct Policy Search Methods
In the first series of experiments4, following the existing

body of research about e�ective learning methods for Tetris
[16], we use only direct policy search methods. In particular,
we employ Cross-Entropy Method (CEM, [13]) and Covari-
ance Matrix Adaptation Evolution Strategy (CMA-ES, [7]).
Both methods can be classified as evolution strategies that
work by maintaining, updating and sampling from a multi-
variate Gaussian probability distribution N (µ, �). The sim-
plest form of CEM, which we employ here, assumes that the
covariance matrix � is a diagonal matrix. CMA-ES main-
tains and adapts the entire covariance matrix and features
some additional adaptation mechanisms which CEM lacks.
However, it was observed recently that CEM is just a special
case of CMA-ES [14].

3.1.1 Hand-Designed B&I Features
In the first experiment we used the standard set of hand-

designed Tetris B&I features, which implies learning tak-
ing place in a 21-dimensional parameter space (see Section
2.3.1). Following the initial study on SZ-Tetris [17], for CEM
we used the selection rate 0.015 and population size of 1000.
However, in contrast to that work, the fitness of an individ-
ual is an average number of cleared lines over 100 games,
instead of just one game. In preliminary experiments, we
have found that using such more precise evaluation is bene-
ficial for the final performance.

For CMA-ES we used the standard version of the algo-
rithm6, also with the population size of 1000. What we,
however, turned o� was the step-size adaptation (step-size
was set to 1), which we found harmful for the optimization
process in the preliminary experiments.

We stop both algorithms after 200 generations (that is
after 1000 ◊ 100 ◊ 200 = 20 000 000 of games).

The performance obtained in 10 runs of the algorithms
are shown in the left inset in Fig. 2. A single datapoint in
the figure marks the performance of a best-of-generation so-
lution. On average, CMA-ES performs slightly better than
CEM (124.8 ± 13.1 vs. 117.0 ± 6.3 on average), but sta-
tistically there is no di�erence between these results. In-
terestingly, although most of the runs of CMA-ES cluster
near the average of 124.8 points, one run found a policy
that scores 180.6 ± 1.2 on average, equaling the SZ-Tetris
record belonged to the hand-coded controller (cf. Section
2.2). To date, it was dubious whether this performance level
can be achieved using the existing set of features (like the
B&I ones) [17]. The achievement of this policy shows also
that the employed direct policy search methods are prone to
getting stuck in local minima, where significantly better op-
tima exist. For reproducibility, below we show the weights
of this best-performing controller:
4The source code required to run the experiments along with
the best obtained players is available at http://github.com/
wjaskowski/gecco-2015-sztetris.
5Szita and Szepesvári [17] report to use the selection rate 0.1,
but in the code repository referred from the paper selection
rate was set to 0.01.
6https://code.google.com/p/cma-es/

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

70.8 -76.2 5.5 -2.4 -11.9 0.58 -15.7 60.3 72.2 -22.0
d1 d2 d3 d4 d5 d6 d7 d8 d9

7.3 -0.9 -41.8 -2.3 -44.4 0.75 -28.3 55.7 -56.2
max

h

holes
93.1 -55.5

3.1.2 Knowledge-Free Systematic n-Tuple Network
An agent using the handcrafted B&I features can equal

the performance of the hand-made heuristic agent. Is it
possible to achieve the same level of performance without
manually designing the features? In order to answer this
question, we employ the 3◊3-tuple networks presented in
Section 2.3.2.

Knowledge-free approaches require longer learning than
the knowledge-based ones. n-tuple networks are no excep-
tion to this rule. While the function involving B&I features
have only 21 parameters, the 3◊3-tuple network consists of
36 864 of them. Such a high number of parameters precludes
the use of CMA-ES, since its time complexity depends on
the square of the number of optimized parameters. Instead
we used VD-CMA-ES [1], a new linear variant of CMA-ES,
which maintains the covariance matrix implicitly in a form
of D(I + vv

T)D, where D is a diagonal matrix of dimension
n and v is a vector in Rn. This expression cannot repre-
sent all possible covariance matrices, but is able to capture
some dependencies between the variables in a compressed
way, allowing so to apply the concepts of covariance matrix
adaptation to highly dimensional spaces.

The course of learning is shown in the right inset of Fig. 2.
Due to the large number of parameters, the learning is much
slower; however, while the learning with the B&I features
saturates quickly, VD-CMA-ES with n-tuples does not ex-
hibit such a tendency, and even after 1000 generations, when
we stopped the experiment, there is an observable potential
for further growth. Most importantly, however, VD-CMA-
ES using the n-tuple network surpasses CMA-ES with B&I
features by a large margin (219.7±2.8 vs. 124.8±13.2). The
best controller obtained by VD-CMA-ES scores 223.0 ± 1.4
points on average.

The experiment also shows that, despite CEM is a viable
method for a small number of parameters, it performs poor
in these high-dimensional spaces, being not able to find any
agent that clears more than 20 lines.

3.2 Temporal Difference Learning

3.2.1 Systematic 3◊3-Tuple Network
Szita and Szepesvári stated: “There are many RL algo-

rithms for approximating the value functions. None of them
really work on (SZ-)Tetris, they do not even come close
to the performance of the evolutionary approaches.” [17].
Indeed, when we applied the classical temporal di�erence
learning TD(0) [15] to B&I features, the agent performance
after 1 million training episodes was still close to 0 regardless
of the exploration and learning rates.

This underperformance was puzzling, given that TD(0)
has been found successful is so many various domains. We
hypothesized that some peculiar properties of the B&I fea-
tures could have prevented the algorithm from locating the
well-performing policies. To verify this, we applied TD(0)

http://github.com/wjaskowski/gecco-2015-sztetris
http://github.com/wjaskowski/gecco-2015-sztetris
https://code.google.com/p/cma-es/
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Table 1: Comparison of the methods for SZ-Tetris. Method’s average has been estimated based on the

number of samples in ‘Runs’ column. Best agent performance has been estimated on 10 000 episodes. ±
precedes 95% confidence interval delta.

Algorithm Evaluation Function Features Learning Games Method’s Average Runs Best Agent Score

Hand-coded [17] - - - - - 183.6 ± 1.4

TD(0.5) committee [6] MLP on B&I 10 ◊ 1655 5 mln - - ca. 150 [6]

CEM B&I 21 20 mln 117.0 ± 6.3 10 146.4 ± 1.0

CMA-ES B&I 21 20 mln 124.8 ± 13.1 10 180.6 ± 1.2

VD-CMA-ES 3◊3-tuple network 36 864 100 mln 219.7±2.8 10 232.0 ± 1.4

TD(0) 3◊3-tuple network 36 864 4 mln 183.3 ± 4.3 50 220.0 ± 1.3

TD(0) 4◊4-tuple network 4 456 448 4 mln 218.0 ± 5.2 50 294.8 ± 1.4

to the 3◊3-tuple network, using the learning rate – = 0.001
and ‘-greedy policy. ‘ was initialized by 0.1 and multiplied
by 0.9 every 100 000 training episodes.

Figure 3 shows the results of 50 runs of TD(0). Its average
score is significantly lower than the score obtained byVD-
CMA-ES (183.3 ± 4.3 vs.219.7±2.8), but was achieved at a
much lower computational expense (4 million vs. 100 million
training episodes).

Nevertheless, n-tuples network is the first representation
for which TD(0) works for this problem.

3.2.2 Systematic 4◊4-Tuple Network
We treat the reasonably good performance achieved by

TD(0) with the 3◊3-tuple network as a sign of its capa-
bility to e�ciently navigate in highly dimensional spaces.
Given that the gradient-based update rule used by this al-
gorithm operates on each parameter independently, there
are no principal reasons why this could not hold in presence
of even higher numbers of parameters.

In the right inset of Fig. 3, we present the performance
of TD(0) applied to the systematic 4◊4-tuple network. The
learning proceeded here in a vast 4 456 448-dimensional search
space, i.e., in a search space which dimensionality is of the
same order as the number of learning episodes. Neverthe-
less, this apparently did not prevent TD(0) from excelling on
this task. Although, its average performance of 218 ± 5.2 is
similar to the one achieved by VD-CMA-ES using 3◊3-tuple
network 219.7±2.8, it was achieved using 25-times smaller
computational budget (4 mln vs. 100 mln games). Short
learning time made it possible to increase the number of in-
dependent runs to 50. This resulted in a strategy that clears
an impressive 294.8±1.4 lines on average, i.e., reaching the
level of play that has not been reported for SZ-Tetris to date.

4. DISCUSSION
To streamline our discussion, in Table 1 we summarize the

experiments conducted in this paper and the relevant prior
results on SZ-Tetris.

The arguably most important observation emerging from
these results is the potential dwelling in high-dimensional
knowledge-free representations. The systematic n-tuple net-
works proved versatile here in being not only good approxi-
mators of state-value function (when used with a gradient-
based method of TD(0)), but also as state-preference func-

tions (when evolved via direct policy search). In terms of
average score, none of the configurations relying on hand-
crafted low-dimensional representations outperformed the
policies equipped with n-tuple networks. We find this ob-
servation important, given that research on computer Tetris
has been to date dominated by approaches that involve
handcrafted features, sometimes sophisticated and deeply
rooted in domain knowledge [24].

The e�ciency of the knowledge-free representations is also
conceptually stunning, when one realizes that a n-tuplenet-
work-based SZ-Tetris agent has no explicit knowledge on
any aspects of the game that are essential for designing the
handcrafted representations: the constraints resulting from
board dimensions, the shapes of the tetrominoes, the ’me-
chanics’ of tetrominoes fitting to each other, etc. Its entire
perception of a game state boils down to a sum of a few
dozen of numbers selected from lookup tables by a 200-bit
board state. Yet despite this appalling ignorance, n-tuples
manage to break the current performance records.

Ultimately however, the performance of a given policy
depends also on the training algorithm. In this respect,
the capacities of temporal di�erence learning methods are
impressive, particularly for the most extensive 4◊4 tuples,
where it manages to learn supreme policies from a number of
episodes that is comparable to the number of policy parame-
ters (4 million episodes vs. 4 456 448 weights). This suggests
that Szita’s and Szepesvári’s diagnosis that value function-
based RL algorithms do not work for SZ-Tetris ([17], p.4)
does not hold anymore. Well-performing policies can be ef-
ficiently found by temporal di�erence learning for SZ-Tetris
once the underlying representation of state-value function is
rich enough.

This is however not to say that gradient-based learning
of value functions is destined to be always the pinnacle of
performance. The local nature of search performed by such
techniques incurs a measurable risk of missing even better
candidate solutions. Despite the high-dimensional search
space, VD-CMA-ES, which is a direct search method, was
not only found to surpass TD(0) for 3 ◊ 3-tuple network,
but also to match the average score of TD(0) for a larger
4 ◊ 4-tuple network. There are two factors that might have
aid the direct policy search: not only the global, exploratory
character of CMA-ES, but also the fact that the direct pol-
icy search seeks a state preference function, and so cares



only about the ordering of state values, while the methods
like TD(0) approximate state-value function and so insist
on finding the right absolute state values. Because for any
given state-value function, there are infinitely many state
preference functions that select the actions in exactly the
same way, finding a function that is good only with respect
to the above ordering may be easier.

The price to pay for the potential of achieving better per-
formance is computational expense. Whether gaining a few
extra cleared lines in SZ-Tetris is worth investing 25-times
greater computation time is a matter of context. If one is
ultimately interested in finding that one best-of-all strategy,
this may be the case. In this context, it might be tempting to
consider hybrid approaches that leverage TD’s capability to
operate in high-dimensional spaces while maintaining some
features of parallel global search. The evolutionary tempo-
ral di�erence learning we proposed and studied in [19, 10,
21, 20] seems to be a viable option for such an endeavor.

We conducted also preliminary behavioral analysis of the
well-performing policies7, trying to identify the key features
that might have determined their performance. All learning
algorithms compared here managed to more or less redis-
cover the essence of the hand-coded policy, i.e., they learned
to stack the ‘S’ and ‘Z’ tetrominoes vertically in five separate
blocks of width two. The best 4◊4-tuple TD policy is more
sophisticated. First of all, it does not stick to a fixed divi-
sion into five blocks of width two, and can drop a tetromino
vertically so that it fills in a single gap at arbitrary abscissa.
It can also thoughtfully drop tetrominoes in horizontal posi-
tion. Most interestingly, sometimes it makes a move that, at
first sight, looks suboptimal and leaves a hole buried beneath
the tetrominoes. Our analysis revealed, however, that, in a
longer run, this makes it easier to dig up (‘reopen’) the holes
and fill them in. More behavioral patterns emerged in the
policies learned here, but their thorough analysis is beyond
the scope of this paper.

On a more technical level, this study is, to the best knowl-
edge of the authors, the first practical demonstration of the
e�ciency of VD-CMA-ES [1], the new variant of CMA-ES
designed with high-dimensional representation in mind. Ap-
parently, given many dimensions, it may be not necessary
to capture all pairwise dependencies between them by main-
taining the complete covariance matrix. Modeling only a
fraction of that information can be su�cient to attain supe-
rior results. On the other hand, taking some interdependen-
cies into account is essential, and discarding them altogether
has detrimental e�ect, as witnessed by the inferior perfor-
mance of CEM.

7Videos presenting exemplary games are available at http:
//github.com/wjaskowski/gecco-2015-sztetris.

5. CONCLUSIONS
In this study, we proposed a novel knowledge-free pol-

icy representation for the challenging reinforcement learning
problem of SZ-Tetris and put it under extensive experimen-
tal scrutiny. The overall conclusion is that, by the virtue of
high-dimensional systematic n-tuple network representation
and appropriate learning algorithms, one can achieve at least
the state-of-the-art level of performance in this game while
being essentially completely ignorant about its nature. The
peak demonstrator of validity of this stance is the best-to-
date SZ-Tetris controller, which by clearing over 294 lines on
average reaches a new quality of performance and conquers
the hand-coded player, solving so the Challenge #1 posed
by Szita and Szepesvári [17]. In authors’ opinion, these re-
sults substantially enrich our current understanding of this
game, and possibly similar RL tasks.

With this piece of work, we hope to pave the way towards
a more routine use of knowledge-free representations in re-
inforcement learning tasks, whether approached with state-
value-based function learning or with (evolutionary) direct
policy search. As it follows from this study, both these ap-
proaches o�er nowadays powerful algorithms that fare very
well even when the number of variables to be simultaneously
optimized is in the order of millions. By casting a learning
task into a high-dimensional space, this project subscribes
to the trend present in other branches of machine learning
and computational intelligence, where, for instance, using
thousands of features is nowadays common.

The computational overhead incurred by evolutionary search
in huge spaces of knowledge-free representations may seem
prohibitive. Note however that the statistics shown in Ta-
ble 1 reflect only the machine-part of the e�ort invested in
finding a solution. In focusing on the time spent on com-
putation, we tend to ignore the human intellectual invest-
ment put into designing and validating hand-coded heuris-
tics or handcrafted features. What is, for that instance, the
machine-equivalent of the e�ort devoted by the authors of
[17] to design their SZ-Tetris heuristics? If we had the means
to take this human investment into account, the overall ef-
fort would possibly be not so favorable for knowledge-based
approaches anymore.
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