
Learning N-tuple Networks for Othello by
Coevolutionary Gradient Search

Krzysztof Krawiec and Marcin Szubert
Institute of Computing Science

Poznan University of Technology
Piotrowo 2, 60965 Poznań, Poland

kkrawiec,mszubert@cs.put.poznan.pl

ABSTRACT
We propose Coevolutionary Gradient Search, a blueprint for
a family of iterative learning algorithms that combine ele-
ments of local search and population-based search. The ap-
proach is applied to learning Othello strategies represented
as n-tuple networks using different search operators and
modes of learning. We focus on the interplay between the
continuous, directed, gradient-based search in the space of
weights, and fitness-driven, combinatorial, coevolutionary
search in the space of entire n-tuple networks. In an exten-
sive experiment, we assess both the objective and relative
performance of algorithms, concluding that the hybridiza-
tion of search techniques improves the convergence. The
best algorithms not only learn faster than constituent meth-
ods alone but also produce top ranked strategies in the on-
line Othello League.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Connectionism
and neural nets, Parameter learning; I.2.8 [Artificial Intel-
ligence]: Problem Solving, Control Methods, and Search—
Heuristic methods; J.m [Miscellaneous]:

General Terms
Algorithms

Keywords
Othello, Coevolution, Temporal Difference Learning, N-tuple
Networks

1. INTRODUCTION
For most of non-trivial learning and optimization problems
finding a solution in one step is formally impossible or com-
putationally infeasible. This often remains true not only
when the goal of the search algorithm is to find a truly op-
timal solution but also when a well-performing approximate

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

solution is sought for. As a result, most of the contemporary
search algorithms are, in a wide sense, iterative (incremen-
tal), meaning that a working candidate solution (or a set of
solutions) is maintained and improved towards some goal(s).
At least two questions have to be answered in order to de-

sign a specific search algorithm along this template. Firstly,
how to define the update rule according to which the working
solution(s) would be modified? And secondly, where should
the information required for that update come from? In an
attempt to answer the first question, we can draw a broad
distinction between the directed and undirected search. Well-
known representatives of the former category are gradient-
based methods. Their common feature is the assumption
that it is possible to estimate, analytically or numerically,
the direction and the rate of change of the objective func-
tion in the close vicinity of the considered candidate solu-
tion, with respect to the variables that describe it. Thanks
to that, they typically perform well in smooth, continuous
search spaces, even in presence of many variables. In the
undirected search, no special assumptions concerning the
objective function are made and the update rule typically
operates with a certain degree of randomness without an ex-
plicit analysis of the objective function (apart from sampling
its values). These methods are applicable in a wider range of
contexts, including combinatorial problems, but often con-
verge slow to well-performing solutions. Many variants of
evolutionary computation belong to this category.
The answer to the second question is apparently trivial: in

a typical setting, it is the objective function that is the only
and ultimate source of information that guides the search.
Here, however, we consider the surprisingly common class of
problems for which an objective function does not exist or it
is computationally expensive – a class that embraces, among
others, learning of game strategies. Within that class, the
primary driver of search are interactions that serve as a sur-
rogate for the objective function. In the simplest degenerate
scenario, an interaction takes place between a solution and
itself. Self-play, a technique used for game strategy learn-
ing, represents this case. In population-based methods, like
coevolutionary algorithms, interaction involves two or more
different solutions that can be considered as peers, as they
typically come from the same population (or from the equiv-
alent generation of another population). Such approach en-
ables the algorithm to build a kind of ‘internal gradient’ be-
tween individuals that mutually act as teachers and learners.
Finally, sometimes it may be useful to enforce interactions
with some reference solutions, which have some special sta-
tus in the algorithm. They typically embody the knowledge

(a) Othello initial board state (b) Heuristic WPC weights

Figure 1: Othello board and its colouring according to
heuristic player weights (darker color – greater weight).

acquired by the algorithm in the previous iterations, as it
is the case in archives used in evolutionary computation or
belief space in cultural algorithms.
Different search algorithms and different interaction modes

feature then mutually complementary features that deserve
some form of fusion. The past literature on the topic (see
Section 2.3) misses a systematic investigation into the inter-
play between the above components. In response to that,
our contribution in this study is a family of algorithms that
combine these design choices in different ways, termed jointly
Coevolutionary Gradient Search, and their experimental ap-
plication to the task of learning n-tuple networks strategies
for the game of Othello, without explicit involvement of hu-
man expert knowledge.

2. THE GAME OF OTHELLO
Othello is played by two players on an 8 × 8 board. Typi-
cally, pieces are disks with a white and black face, each face
representing one player. Figure 1a shows the initial state of
the board; each player starts with two stones in the middle
of the grid. The black player moves first, placing a piece,
black face up, on one of four shaded locations. Players make
moves alternately until no legal moves are possible.
A legal move consists of placing a piece on an empty

square and flipping appropriate pieces. To place a new piece,
two conditions must be fulfilled. Firstly, the position of the
piece must be adjacent to an opponent’s piece. Secondly, the
new piece and some other piece of the current player must
form a vertical, horizontal, or diagonal line with a contigu-
ous sequence of opponent’s pieces in between. After placing
the piece, all such opponent’s pieces are flipped; if multiple
lines exist, flipping affects all of them. This makes the game
particularly dramatic: a single move may gain the player a
large number of pieces and swap players’ chances of winning.
A legal move requires flipping at least one of the oppo-

nent’s pieces. Making a move in each turn is obligatory,
unless there are no legal moves. The game ends when both
players have no legal moves. The player who at the end has
more disks wins; the game can also end with a draw.

2.1 The Othello League
A good overview of different Othello player architectures
and their estimated performance is provided by the Othello
Position Evaluation Function League [12]. Player’s rank in
the league is based on the score obtained in 100 games played
at 1-ply (in which 10% of moves are forced to be random)

against the standard heuristic weighted piece counter player
(WPC). WPC is the simplest architecture, which may be
viewed as an artificial neural network comprising a single
linear neuron with inputs connected to all board locations.
It assigns a single weight to each location and calculates
the utility of a given board state by multiplying weights
by color-based values of the pieces occupying corresponding
locations. The standard heuristic player is illustrated in the
Fig. 1b. We use it also as an opponent in our experiments
to measure the performance of evolved strategies.
Regarding the league results, all the best players submit-

ted to the competition are based on more complex archi-
tectures than WPC. Examples of such architectures that
involve numerous parameters are: a symmetric n-tuple net-
work, a multi-layer perceptron (MLP), and a spatial MLP.
The best player found so far in the league was an n-tuple
network with a winning percentage of just below 80%. Such
result can be achieved by a simple self-play training with
temporal difference learning (TDL, see Section 3.1) [11]. In
our research we use the same architecture to compare per-
formance acquired by different learning methods.

2.2 The N-tuple Network Architecture
The idea of n-tuple systems was originated by Bledsoe and
Browning [2] for use in character recognition. Since then it
has been successfully applied to both classification [17] and
function approximation tasks [9]. Their main advantages
include conceptual simplicity, speed of operation, and capa-
bility of realizing non-linear mappings to spaces of higher
dimensionality. Recently, Lucas proposed employing the n-
tuple architecture also for game-playing purposes [11].
By definition, an n-tuple system expects as input some

compound entity (matrix, tensor, image) x, which elements
(usually scalar variables) can be indexed and retrieved in
a systematic way, most frequently by using some form of
coordinates. An n-tuple network operates by sampling that
input object with m n-tuples. Each n-tuple ti is a sequence
of n variables aij , j = 0..n− 1 corresponding to locations in
the input. Assuming that each variable has one of v possible
values, a single n-tuple can be viewed as a template for an
n-digit number in base-v numeral system. For this reason,
we can state that n-tuple represent one of vn possible values.
The number represented by the n-tuple ti is used as an index
in associated look-up table LUTi, which contains parameters
equivalent to weights in standard neural networks. For a
given input x, the output of the n-tuple network can be
calculated as:

f(x) =
m∑

i=0

fi(x) =
m∑

i=0

LUTi

[
n−1∑
j=0

x(aij)vj

]
(1)

where x(aij) denotes selecting from x the element located
at position indicated by aij . In general, two n-tuples are
allowed to overlap, i.e., to select the same variable from x.
In the context of Othello, an n-tuple network acts as a

state evaluation function. It takes a board state as an input
and returns its utility. Input variables are sampled board
locations and their value is 0, 2, or 1 if, respectively, loca-
tion is occupied by a white piece, black piece, or remains
empty. Consequently, n-tuple represents a ternary number
which is used as an index for the associated look-up table
containing 3n entries (see Fig. 2). Additionally, symmetric
sampling (introduced in [11]) can be incorporated – a single

2 0 1

1 0 2
0

Figure 2: Two sample n-tuples viewed as templates for base-
3 numbers. Each input location represents a ternary digit.
Multiplying them by successive powers of 3 leads to decimal
values of 2 · 32 + 1 · 30 = 19 and 1 · 33 + 2 · 31 = 33, which
are used as indexes in the associated look-up tables.

n-tuple is employed eight times, once for each of possible
board reflection and rotation. LUT values indexed by all
such equivalents are summed together to form the output of
the particular n-tuple. Final value of a board is simply the
sum of all n-tuple outputs.
The number of possible n-tuple instances is exponential in

function of the size of x and n, so assigning the input vari-
ables (board locations) to n-tuples is an important design
issue. Typically, in pattern recognition applications the sim-
plest approach of random selection is commonly used. How-
ever, in the context of games, the spatial neighbourhood of
chosen locations is more essential. For this reason, and par-
ticularly for Othello, it sounds natural to choose connected
set of locations, like a straight line or a rectangle area, from
the board and assign it as successive n-tuple inputs. In our
implementation we allowed for more flexible assignments in
the form of snake shapes, proposed by Lucas in [11]. For
each n-tuple we choose a random square on the board from
which a random walk of n− 1 steps in any of the maximum
eight possible directions is taken. Other implementation de-
tails concerning n-tuples are presented in section 4.1.

2.3 Previous Research on Computer Othello
The game of Othello has been a subject of artificial intelli-
gence research for more than 20 years. The significant inter-
est in this game may be explained by its simple rules, large
state space cardinality (around 1028) and high divergence
rate causing that it remains unsolved – a perfect Othello
player has not been developed yet.
Conventional Othello-playing programs are based on a

thorough human analysis of the game leading to sophisti-
cated handcrafted evaluation functions. They often incor-
porate supervised learning techniques that use large expert-
labeled game databases and efficient look-ahead game tree
search. Today, one of the strongest Othello programs is Lo-
gistello [3], which makes use of advanced search techniques
and applies several methods to learn from previous games.
Recently, the mainstream research on Othello has moved

towards better understanding of what types of learning algo-
rithms and player architectures work best. The CEC Othello
Competitions [12] pursued this direction by limiting the ply
depth to one, effectively disqualifying the algorithms that
employ a brute-force game tree search.

The most challenging scenario of elaborating a game strat-
egy is learning without any support of human knowledge and
opponent strategies given a priori. This task formulation is
addressed by, among others, Temporal Difference Learning
(TDL) and Coevolutionary Learning (CEL), which were ap-
plied to Othello by Lucas and Runarsson [13]. Other ex-
amples of using self-learning approaches for Othello include
coevolution of spatially aware MLPs [4], coevolutionary tem-
poral difference learning [23], and Nash Memory applied for
coevolved n-tuple networks [15].

3. METHODS

3.1 Temporal Difference Learning
Since the influential work of Tesauro [24] and the success of
his TD-Gammon player trained through self-play, Temporal
Difference Learning (TDL) [21] has become a well-known
approach for elaborating game strategies without help from
human knowledge or expert strategies given a priori.
The use of reinforcement learning techniques for such ap-

plications stems from modeling a game as a sequential deci-
sion problem, where the task of the learner is to maximize
the expected reward in the long run (game outcome). The
essential feature of this scenario is that the actual (true)
reward is typically not known before the end of the game
so some means are necessary to propagate that information
backwards through the series of states, assign credit to par-
ticular decisions, and guide the intra-game learning.
The TD(0) algorithm solves prediction learning problems

that consist in estimating the future behavior using the past
experience. Its goal is to make the preceding prediction
to match more closely the current prediction (taking into
account distinct system states observed in the corresponding
time steps). Technically, the prediction at a certain time
step t can be considered as a function of two arguments: the
outcome of system observation and the vector of modifiable
weights w which are updated by the following rule:

∆wt = α(Pt+1 − Pt)∇wPt. (2)

In our case, Pt is realized by an n-tuple network (Eq. 1)
whose outputs are squeezed to the interval (−1, 1) by hyper-
bolic tangent. Using such prediction function within TD(0)
update rule (Eq. 2) results in changing LUT weights ac-
cording to:

∆LUTi[
n−1∑
j=0

x(aij)vj]t = α(Pt+1 − Pt)(1− P 2
t)

This formula modifies only those LUT entries that corre-
spond to the elements of the board state selected by the
n-tuple, i.e., with indices generated by the n-tuple. If the
state observed at time t+ 1 is terminal, the exact outcome
of the game is used instead of the prediction Pt+1. The out-
come is +1 if the winner is black, −1 if white, and 0 when
the game ends in a draw.
The process of learning consists in applying the above

formula to the look-up table entries after each move. The
training data for that process, i.e., a collection of games,
each of them being a sequence of states x1,x2, . . ., is ac-
quired in a method specific way (e.g. via self-play). During
training games, moves are selected on the basis of the most
recent evaluation function.

Othello is a deterministic game, thus the course of the
game between a particular pair of deterministic players is
always the same. This feature reduces the number of possi-
ble game trees that can be encountered and explored by a
learner, what makes learning ineffective. To remedy this sit-
uation, at each turn, a random move is forced with certain
probability. After such a random move, weight update does
not occur. Thanks to random moves, players are confronted
with a wide spectrum of possible behaviours of their op-
ponents, including the quite unexpected ones, which makes
them more robust and versatile.

3.2 Coevolutionary Learning
Temporal difference learning approach is a gradient-based
local search method that maintains a single solution and
as such has no built-in mechanisms for escaping from local
minima. Evolutionary computation, a global search neo-
Darwinian methodology of solving learning and optimiza-
tion problems, has completely opposite characteristics – it
maintains a population of candidate solutions (individuals),
but has no means for calculating individually adjusted cor-
rections for each solution parameter. It lessens the problem
of local minima by its implicit parallelism and nondeter-
ministic update of candidate solutions. Therefore, the local
characteristics of the fitness landscape is no longer the only
force that moves individuals in the search space – the second
one is randomness. Consequently, evolutionary computation
seems to be an attractive complementary alternative for TD
for learning game strategies.
However, one faces substantial difficulty when designing

fitness function, an indispensable component of an evolu-
tionary algorithm that drives the search process, for the
task of learning game strategies. To properly guide the
search, fitness function should objectively assess the utility
of the evaluated individual, which in case of games can be
done only by playing against all possible opponent strate-
gies. For the majority of games this is computationally
intractable. Considering instead only a limited sample of
opponents lessens the computational burden but biases the
search. For this reason, a much more appealing alternative,
from the viewpoint of game strategy learning, is coevolu-
tion where individual’s fitness depends on the results of in-
teractions with other individuals from the population. In
learning game strategies, an interaction consists in playing
a game and increasing the fitness of the winner while de-
creasing the fitness of the loser. This evaluation scheme is
termed as competitive coevolution [1].
Coevolutionary Learning (CEL) of game strategies follows

this idea and typically starts with generating a random ini-
tial population of player individuals. Individuals play games
with each other and the outcomes of these interactions de-
termine their fitness values. The best performing strategies
are selected, undergo genetic modifications such as muta-
tion or crossover, and their offspring replace some of (or
all) former individuals. In practice, this generic scheme is
supplemented with various details, which causes CEL to em-
brace a broad class of algorithms that have been successfully
applied to many two-person games, including Backgammon
[16], Checkers [7],and a small version of Go [19]. In particu-
lar, Lucas and Runarsson used (1 + λ) and (1, λ) Evolution
Strategies in a competitive environment to learn a strategy
for the game of Othello [13].

3.3 Coevolutionary Learning with Archives
As the set of opponent strategies faced by an individual is
limited by the population size, the evaluation scheme used
in pure CEL is still only a substitute for the objective fit-
ness function. The advantage of this approach, when com-
pared to evolution with fitness function based on a fixed
sample of strategies, is that the set of opponents changes
with time (from one generation to another) so that the indi-
viduals belonging to a particular lineage are exposed to more
opponents.. In this way, the risk of biasing the search to-
wards an arbitrary direction is expected to be reduced. How-
ever, without some extra mechanisms, there is no guarantee
that the population will change in the desired direction(s)
or change at all. The latter scenario, lack of progress, can
occur when, for instance, player’s opponents are not chal-
lenging enough or much too difficult to beat. These and
other undesirable phenomena, jointly termed coevolutionary
pathologies, have been identified and analyzed [25, 6].
In order to deal with coevolutionary pathologies, coevolu-

tionary archives were introduced that try to sustain progress.
A typical archive is a (usually limited in size, yet diversi-
fied) sample of well-performing strategies found so far. In
this study we use the Hall of Fame (HoF, [18]), which sim-
ply stores all the best-of-generation individuals encountered
so far. The individuals in population, apart from playing
against their peers, are also forced to play against randomly
selected players from the archive. The fitness is thus par-
tially determined by confrontation with past ‘champions’.

3.4 Coevolutionary Temporal Difference
Learning

The past results of learning WPC strategies for Othello [13]
and small-board Go [19] demonstrate that TDL and CEL ex-
hibit complementary features. CEL progresses slower, but,
if properly tuned, eventually outperforms TDL. With re-
spect to learning n-tuple networks, though, CEL is reported
to be less successful while TDL confirms its strength [11].
Still, it sounds reasonable to combine these approaches into
a hybrid algorithm exploiting different characteristics of the
search process performed by each method. In [23] and [10] a
method termed Coevolutionary Temporal Difference Learn-
ing (CTDL) was proposed and applied to learn WPC strate-
gies. CTDL maintains a population of players and alter-
nately performs TD learning and coevolutionary learning.
In the TD phase, each player is subject to TD(0) training.
Then, in the CEL phase, individuals are evaluated on the
basis of a round-robin tournament. Finally, a new genera-
tion of individuals is obtained using selection and variation
operators and the cycle repeats. The idea realized by this
method can be called Coevolutionary Gradient Search. The
overall conclusion was positive for CDTL, which produced
strategies that on average defeated those learned by TDL
and CEL. Encouraged by these results, we wonder whether
CTDL would prove beneficial also for more complex n-tuple
network architecture.
Other hybrids of TDL and CEL have been occasionally

considered in the past. Kim et al. [8] trained a population
of neural networks with TD(0) and used the resulting strate-
gies as an input for the standard genetic algorithm with mu-
tation as the only variation operator. In [15] a bounded-size
Nash Memory archive for coevolution is combined with the
TDL used as a weight mutation operator.

4. EXPERIMENTAL SETUP
To verify the hybridization of coevolution with temporal dif-
ference learning, several experiments were conducted. All
algorithms were implemented using our coevolutionary al-
gorithms library called cECJ [22] built upon Evolutionary
Computation in Java (ECJ) framework [14]. Our unit of
computational effort is a single game and the time of other
operations is neglected. To provide fair comparison, all runs
were stopped when the number of games played reached
2, 000, 000. Each experiment was repeated 24 times.

4.1 Player Architecture
We rely on n-tuple network because of its appealing poten-
tial demonstrated in recent studies [15, 11] and promising
results in the Othello League [12]. We start from small net-
works formed by 7 instances of 4-tuples (7×4) which include
567 weights. Later, we move to 9×5 networks (2197 weights
on aggregate) to end up with the largest 12× 6 architecture
(8748 weights) that has been recently successfully applied
to Othello by Manning [15]. This progression enables us
to observe how particular methods cope with the growing
dimensionality of the search space.
We decided to employ the input assignment procedure

that results in randomly placed snake-shaped tuples (see
Section 2.2). Regarding the look-up table weights, their ini-
tial values depend on particular learning algorithm. As pre-
vious research shows, TDL learns faster when 0-initialized.
Evolutionary methods, on the other hand, assume that the
population is randomly dispersed in the search space. For
this reason, in pure coevolutionary algorithms we start from
weights initialized randomly from the [−1, 1] range.

4.2 Search Operators
The considered search heuristics operate in two spaces – dis-
crete network topology space and continuous weight space.
Dimensions of the topology space are: the number of tu-
ples, their size and input connections. Dimensionality of
the weight space depends directly on the number of weights
and grows exponentially with tuples length. We search both
spaces in parallel as it gives the learner more flexibility than
searching only one of them. However, to avoid excessive
complexification, we limit changes just to input assignment
– the number of n-tuples and their length stay the same
throughout learning. Although the majority of methods ap-
plied to train neural networks are based on a fixed structure
and search only the weight space, there are some exceptions
which explore topology space too [20].
We employ two types of operators: genetic and gradient-

based. Let us note that the former ones rely on direct encod-
ing of strategies, i.e., individual’s genome is a concatenation
of lookup table weights associated with its n-tuples. Overall,
we use three operators:

• weight mutation (mw) – each weight (LUT entry) with
probability pmw = 0.05 undergoes Gaussian mutation
(σ = 0.25)

• topology mutation (mt) – each input (board location)
is replaced, with probability pmt = 0.01, by another
input from its neighbourhood.

• topology crossover (x) – with probability px = 1.00, in-
dividual reproduction is sexual – two individuals mate
and exchange genes, i.e., entire tuples with look-up

tables. An offspring inherits m/2 randomly selected
tuples from each. Without crossover reproduction is
agamic – a new individual is a (mutated) copy of its
single parent.

Our gradient-based search operators work in the weight space
and consists in a single training game incorporating TD(0)
algorithm (see Section 3.1) We use learning rate α = 0.001
and force random moves with probability ε = 0.1. The
crucial question is how to get an opponent for this game.
We examine three possibilities: self-play game (s), popula-
tion opponent (p) and archival opponent (a). Interestingly,
learning by interactions with other players brings to mind
the cultural aspect of learning and cultural transmission of
behaviours which were investigated in the context of neural
networks by Denaro et al. [5].

4.3 Learning Algorithms
Several methods were prepared, each being a combination
of CEL, TDL and HoF with specific search operators.
Temporal Difference Learning (TDL) searches only

the weight space using a single search point and a self-play
TDL game as the only search operator.
Coevolutionary Learning (CEL) uses a generational

coevolutionary algorithm with population of 50 individu-
als. In the evaluation phase, a round-robin tournament is
played between all individuals, with wins, draws, and losses
rewarded by 2, 1, and 0 points, respectively, and the to-
tal number of points becomes individual’s competitive fit-
ness. For each pair of individuals, two games are played,
with players swapping the roles of the black and the white
player. The evaluated individuals are subject to tournament
selection with tournament size 5, and then, undergo genetic
operators (weight mutation and topology crossover).
The Hall of Fame Archive (HoF) extends the coevolu-

tionary methods (CEL, CTDL). Each individual plays games
with all 50 individuals from the population and, addition-
ally,with 50 randomly selected individuals from the archive,
so that its fitness is determined by the outcomes of 100
games scored as in CEL. After each generation, the indi-
vidual with the highest fitness joins the archive.
Parallel TDL (PTDL) is a parallel version of TDL. In-

stead of a single player, this method maintains a population
of 50 players, each learned through self-play. This setup al-
lows us to check if it is beneficial is to distribute the available
training games among several players rather than allocating
them to a single one.
Coevolutionary TDL (CTDL) combines CEL and TDL

as described in Section 3.4. The basic version (denoted as
CTDL-s for self-play) is simply PTDL with coevolutionary
selection. More complex setups are constructed by adding
topology and weight search operators. For example, CTDL-
sxmw, employs self-play TDL training, topology crossover
and weight mutation operators. The most sophisticated
hybridization, called CTDL-asxmt involves TDL training
(with itself and archival opponent) and topology crossover
and mutation operators. By default, in each TDL phase
5000 training games are distributed among players. In case
of uniform distribution, each player is learned in 100 games.
Evolutionary TDL (ETDL) operates as CTDL but

uses an external objective to evaluate individuals. Instead of
the round-robin tournament, each individual plays 50 ran-
domized games again the WPC-heuristics player. All search
operators used in CTDL could be applied here as well.

4.4 Performance Measures
Monitoring the progress of learning in interactive domains
is hard since, generally, there is no precise and easily com-
putable objective performance measure. A fully objective
assessment requires playing against all possible opponents,
but the sheer number of them makes this option impossible.
To monitor the progress, 50 times per run (approximately
every 40, 000 games), we appoint the individual with the
highest competitive fitness (i.e., the subjectively best strat-
egy) as the best-of-generation individual and assess its per-
formance (for TDL, the single strategy maintained by the
method is the best-of-generation by definition). It plays
then 1, 000 games (500 as black and 500 as white) against
a predefined, human-designed WPC strategy. The result-
ing percentage score becomes our estimate of its absolute
performance. The second performance measure introduced
below gauges the relative progress of particular methods via
a round-robin tournament of representative individuals.
It should be emphasized that, except for the ETDLmethod,

the interactions taking place in all assessment methods do
not influence the learning process.

5. RESULTS

5.1 Performance Against the Heuristic Player
This performance measure, coming from the Othello League
[12], is the percentage of points (one point awarded for a
win, 0.5 for a draw) scored against the WPC-heuristics,
a fixed player encoded as WPC architecture with weights
graphically illustrated in Figure 1b. All players in our ex-
periments are deterministic, as well as the game of Othello
itself. Thus, in order to estimate the score of a given trained
player against the WPC-heuristic, we forced both players to
make random moves with probability ε = 0.1. This pro-
vides richer repertoire of players’ behaviors and makes the
resulting estimates more continuous and robust.
In the first experiment, we focused on the scalability of

methods with respect to representation size. Figure 3 shows
how their performance varies with growing network size.
The results obtained for the smallest network confirm our
expectations – hybrid methods are in the long run signifi-
cantly better than non-hybrid ones. However, increasing the
network size does not bring any benefits to the coevolution-
based approaches. Indeed, only TDL is able to utilize the
possibilities offered by a larger network and improve its per-
formance, while other methods perform even worse than
with smaller networks. Therefore, we can conclude that
random mutation operator fails to elaborate progress in the
exponentially growing weight space. To maintain its chance
for successful modifications, the population size should also
increase by the same degree. Conversely, directed changes
realized by TDL result in rapid learning regardless of the
weight space dimensionality (followed by stagnation, though).
For the above reasons, when passing to the largest 12× 6

networks, we decided also to replace the genetic weight mu-
tation by topology mutation. This leads to searching the
weight space exclusively by gradient-based operators. Addi-
tionally, ETDL with the same set of operators was applied.
As Fig. 4 demonstrates, once again the basic coevolutionary
methods do not scale well. The modified CTDL with topol-
ogy mutation is significantly better but stagnates just at the
same level as the pure TDL. The most striking observation
is the excellent score achieved by ETDL. The best player

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

a
v
e

ra
g
e

 p
e

rc
e

n
ta

g
e

 s
c
o

re

games played (x 1,000)

CTDL-sxmw + HoF

CTDL-sxmw

TDL

CEL + HoF

CEL

(a) 7× 4 n-tuple network

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

a
v
e
ra

g
e
 p

e
rc

e
n
ta

g
e
 s

c
o
re

games played (x 1,000)

TDL

CTDL-sxmw + HoF

CTDL-sxmw

CEL + HoF

CEL

(b) 9× 5 n-tuple network

Figure 3: Comparison of learning methods for two network
sizes. Average performance of the best-of-generation indi-
viduals measured as a score against WPC-heuristic.

found by this method reached 90%, and it easily took the
lead when submitted to the Othello League [12].
The average score of between 65% and 70% obtained by

CTDL is the same as reported in [11] for simple self-play
TDL and in [15] for sophisticated Nash Memory approach.
Thus, it suggests that there is some kind of ceiling effect
in evaluation of self-learning methods with this measure.
The WPC-heuristic player does not offer sufficiently diver-
sified challenge to differentiate players trained by these al-
gorithms. To verify this hypothesis we conducted a series of
relative performance assessments which are discussed below.

5.2 Tournament Between Teams
A handcrafted heuristic strategy, even when randomized,
cannot be expected to represent in full the richness of possi-
ble behaviors of Othello strategies. In order to get a more re-
alistic performance estimate, we recruit sets of diverse oppo-
nents composed of best-of-generation individuals represent-
ing particular methods. Technically, each team embraces all
the best-of-generation strategies found by 24 runs of a par-
ticular method. Next, we play a round-robin tournament
between the teams representing particular methods, where
each team member plays against all members from the op-
ponent teams. The final score of a team is the overall sum
of points obtained by its players.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

a
v
e

ra
g
e

 p
e

rc
e

n
ta

g
e

 s
c
o

re

games played (x 1,000)

ETDL-sxmt

CTDL-sxmt + HoF

TDL
CTDL-sxmw

CEL

Figure 4: Average performance of 12 × 6 n-tuple network
players measured as a score against WPC-heuristic.

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 0 400 800 1200 1600 2000

p
o
in

ts
 i
n
 t
o
u

rn
a
m

e
n
ts

games played (x 1,000)

TDL

PTDL

CTDL-s

CTDL-sx

CTDL-sxmt

CTDL-sxmt + HOF

Figure 5: Relative comparison of algorithms which employ
self-play training.

Let us notice that the round robin tournament offers yet
another advantage: there is no need to randomize moves
(as it was the case when playing against a single external
player), since the presence of multiple strategies in the op-
ponent team provides enough behavioral variability.
Figure 5 plots the relative performance of algorithms that

use self-play TDL games as a weight modification opera-
tor. The methods that played at the same level against
the WPC-heuristic, here obtain diametrically different re-
sults. Adding topology search operators to the basic CTDL-
s leads to successively improved performance. Comparing
TDL and PTDL lets us state that it is better to devote
all available resources (training games) to the single TDL
player than distribute them evenly among many players.
In the next experiment we used the same methodology to

compare algorithms employing the mutual-play TDL games
with population and/or archival opponents. Since the learn-
ing environment is more challenging in this setup, the num-
ber of training games played in the TDL phase was increased
to 50000. In most methods, a trained player was paired with
10 randomly selected opponents (from the archive or pop-
ulation) and played 100 training games with each of them.
The only exception is CTDL-asxmt where it played 400
games against itself and 200 games with each of the three
newest archival individuals (his direct ancestors).

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 13000

 0 400 800 1200 1600 2000

p
o
in

ts
 i
n
 t

o
u

rn
a

m
e
n

ts

games played (x 1,000)

CTDL-p

CTDL-px

CTDL-pxmt

CTDL-ax + HoF

CTDL-asxmt + HoF

Figure 6: Relative comparison of algorithms which employ
mutual-play training (population or archival opponent).

Figure 6 shows that, in contrast to the previously exam-
ined methods, the topology mutation operator appears to
be much more disruptive now. This can be explained by the
fact that random topology modifications are harder to com-
pensate by TDL because training opponents are strongly
diversified and can represent behaviours that were never en-
countered before. TDL by mutual-play with randomly se-
lected opponents explores the game state space too broadly,
lacking time for its thorough exploitation. The right balance
in the exploration-exploitation tradeoff is kept in CTDL-
asxmt, where more games with fewer opponents were played.
Finally, the weak performance of CTDL-ax is caused by the
detachment of the subset of players used for learning from
the subset used for evaluation. Consequently, coevolution-
ary gradient is lost and genetic drift is all that is left.
The last experiment involved the best methods from the

previous assessments, with emphasis on relative performance
of CTDL methods vs. ETDL. The latter one gives an im-
pression of being the best with regard to external perfor-
mance measure provided by the WPC-heuristic. Figure 7
demonstrates that this evolutionary method trained to win
against a specific opponent is relatively the worst. We can
conclude that it lacks game experience with players rep-
resenting diametrically different strategies than the WPC-
heuristic. Coevolutionary methods, on the other hand, are
trained to play well against a wide variety of opponents and
thus possess more universal Othello-playing skills.

6. CONCLUSIONS
This study is an attempt to bridge the gap between the
combinatorial and the gradient-based search. The proposed
approach of Coevolutionary Temporal Difference Learning
is an interesting mixture that can be analyzed from many
perspectives. From the evolutionary point of view it can be
considered as a realization of Lamarckian coevolution, since
organisms (Othello players) learn throughout their life to
pass acquired traits on to the offspring. Regarding inter-
actions between learning and evolution, it is important to
mention the noticeable analogy to cultural coevolution and
non-genetic transmission of behaviours accomplished with
learning from the others. Finally, the two constituents of
the proposed hybridization have completely different nature
of the search process. Combining their operators for neu-
roevolution seems to be especially appealing.

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 400 800 1200 1600 2000

p
o
in

ts
 i
n
 t

o
u

rn
a

m
e
n

ts

games played (x 1,000)

CTDL-px

ETDL-sxmt

CTDL-sxmt

CTDL-sxmt + HoF

CTDL-asxmt + HoF

Figure 7: Relative comparison of the best coevolutionary
methods with the evolutionary approach.

Regardless of the viewpoint, it has been shown that a
properly balanced hybridization of directed and undirected
search can result in sustaining the progress of learning and
obtaining the best performance in the long-term perspec-
tive. Moreover, the efficiency of n-tuple network has been
confirmed and verified in the Othello League. Although the
player produced by evolutionary approach gains the advan-
tage in the league, our experiments demonstrate that it over-
fits due to being taught only by a heuristic opponent. When
confronted with other entries, it would be probably easily
beaten by the coevolution-based solution.
Even though we find the results encouraging, some el-

ements of the approach need more elaboration. For in-
stance, the topology crossover that exchanges entire n-tuples
is rather simplistic, as it implicitly assumes that the asso-
ciated LUTs have weights within similar ranges. Generally
this is not true, so we expect that the crossover is quite
often disruptive. Designing genetic operators dedicated for
n-tuple networks is an interesting direction for future work.

7. REFERENCES
[1] P. J. Angeline and J. B. Pollack. Competitive

environments evolve better solutions for complex
tasks. In S. Forrest, editor, Proceedings of the 5th
International Conference on Genetic Algorithms,
pages 264–270, 1993.

[2] W. W. Bledsoe and I. Browning. Pattern recognition
and reading by machine. In Papers presented at the
December 1-3, 1959, eastern joint IRE-AIEE-ACM
computer conference, IRE-AIEE-ACM ’59 (Eastern),
pages 225–232, New York, NY, USA, 1959. ACM.

[3] M. Buro. Logistello: A strong learning othello
program. In 19th Annual Conference Gesellschaft für
Klassifikation e.V., 1995.

[4] S. Y. Chong, M. K. Tan, and J. D. White. Observing
the evolution of neural networks learning to play the
game of othello. IEEE Trans. Evolutionary
Computation, 9(3):240–251, 2005.

[5] D. Denaro and D. Parisi. Cultural evolution in a
population of neural networks. In Proceedings of the
8th italian workshop on neural nets, 1997.

[6] S. G. Ficici. Solution Concepts in Coevolutionary
Algorithms. PhD thesis, Waltham, MA, USA, 2004.
Adviser-Jordan B. Pollack.

[7] D. B. Fogel. Blondie24: playing at the edge of AI.
Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2002.

[8] K.-J. Kim, H. Choi, and S.-B. Cho. Hybrid of
evolution and reinforcement learning for othello
players. Computational Intelligence and Games, 2007.
CIG 2007. IEEE Symposium on, pages 203–209, 2007.

[9] A. Kolcz and N. M. Allinson. N-tuple regression
network. Neural Netw., 9:855–869, July 1996.

[10] K. Krawiec and M. Szubert. Coevolutionary temporal
difference learning for small-board go. In IEEE
Congress on Evolutionary Computation (CEC 2010),
pages 1513–1520, 2010.

[11] S. Lucas. Learning to play othello with n-tuple
systems. Australian Journal of Intelligent Information
Processing Systems, Special Issue on Game
Technology, 9(4):01–20, 2007.

[12] S. Lucas and T. P. Runarsson. Othello Competition;
http://algoval.essex.ac.uk:8080/othello/League.jsp.

[13] S. M. Lucas and T. P. Runarsson. Temporal difference
learning versus co-evolution for acquiring othello
position evaluation. In CIG, pages 52–59, 2006.

[14] S. Luke. ECJ 20 — A Java-based Evolutionary
Computation Research System.
http://cs.gmu.edu/~eclab/projects/ecj/, 2010.

[15] E. P. Manning. Using resource-limited nash memory
to improve an othello evaluation function. IEEE
Transactions on Computational Intelligence and AI in
Games, 2(1):40–53, 2010.

[16] J. B. Pollack and A. D. Blair. Co-evolution in the
successful learning of backgammon strategy. Machine
Learning, 32(3):225–240, 1998.

[17] R. Rohwer and M. Morciniec. A theoretical and
experimental account of n-tuple classifier performance.
Neural Comput., 8:629–642, April 1996.

[18] C. D. Rosin and R. K. Belew. New methods for
competitive coevolution. Evolutionary Computation,
5(1):1–29, 1997.

[19] T. P. Runarsson and S. Lucas. Co-evolution versus
self-play temporal difference learning for acquiring
position evaluation in small-board Go. IEEE
Transactions on Evolutionary Computation, 9, 2005.

[20] K. O. Stanley. Efficient Evolution of Neural Networks
Through Complexification. PhD thesis, Department of
Computer Sciences, The University of Texas at
Austin, 2004.

[21] R. S. Sutton. Learning to predict by the methods of
temporal differences. Machine Learning, 3:9–44, 1988.

[22] M. Szubert. cECJ — Coevolutionary Computation in
Java. http://www.cs.put.poznan.pl/mszubert/
projects/cecj.html, 2010.

[23] M. Szubert, W. Jaśkowski, and K. Krawiec.
Coevolutionary temporal difference learning for
othello. In IEEE Symposium on Computational
Intelligence and Games, 2009.

[24] G. Tesauro. Temporal difference learning and
td-gammon. Commun. ACM, 38(3):58–68, 1995.

[25] R. A. Watson and J. B. Pollack. Coevolutionary
dynamics in a minimal substrate. In Proceedings of the
Genetic and Evolutionary Computation Conference
(GECCO 2001), pages 702–709, 2001.

http://cs.gmu.edu/~eclab/projects/ecj/
http://www.cs.put.poznan.pl/mszubert/projects/cecj.html
http://www.cs.put.poznan.pl/mszubert/projects/cecj.html

	Introduction
	The Game of Othello
	The Othello League
	The N-tuple Network Architecture
	Previous Research on Computer Othello

	Methods
	Temporal Difference Learning
	Coevolutionary Learning
	Coevolutionary Learning with Archives
	Coevolutionary Temporal Difference Learning

	Experimental Setup
	Player Architecture
	Search Operators
	Learning Algorithms
	Performance Measures

	Results
	Performance Against the Heuristic Player
	Tournament Between Teams

	Conclusions
	References

