
Poznań University of Technology
Institute of Computing Science

Marcin Szubert

Coevolutionary Reinforcement Learning
and its Application to Othello

Master’s thesis

Supervisor: dr hab. inż. Krzysztof Krawiec

Poznań, 2009

Abstract

This thesis focuses on the fields of evolutionary computation and
machine learning. We present Coevolutionary Temporal Difference
Learning – a novel way of hybridizing coevolutionary search with
reinforcement learning that works by interlacing one-population
competitive coevolution with temporal difference algorithm. Both
constituent methods are capable of learning without human exper-
tise and have shown promising results that indicate their comple-
mentary advantages. Nevertheless, their hybrids have not received
much attention yet, and therefore seem to be innovative.
The coevolutionary part of our algorithm provides for exploration of
the solution space, while the temporal difference learning performs
its exploitation by local search. We apply the proposed method
to the board game of Othello, using weighted piece counter for
representing players’ strategies. The formulation of Coevolutionary
Temporal Difference Learning leads also to introducing Lamarckian
form of coevolution, which we discuss in detail.
The results of an extensive computational experiment demonstrate
that Coevolutionary Temporal Difference Learning is superior to
coevolution and reinforcement learning alone, particularly when co-
evolution maintains an archive to guarantee historic progress. We
investigate the role of the relative intensity of coevolutionary search
and temporal difference search, which turns out to be an essential
parameter. Additionally, we also verify how the initialization of
strategies influences the quality of evolved solutions. Conclusions
point to the need of further investigation of coevolutionary rein-
forcement learning approach. We propose a few potential directions
for the future work.
Finally, in this thesis we also present design and implementation of
the co-Evolutionary Computation in Java library based on ECJ –
a well-known evolutionary computation framework. The developed
software is easy to extend and allows flexible experiment definition.

Acknowledgements

I am very grateful for the advice and support of my supervisor
Krzysztof Krawiec and his assistant Wojciech Jaśkowski, who have
both shown a large interest in my work. I thank them especially for
many constructive comments and careful revision of the text. Our
numerous discussions have greatly improved this thesis. I wish to
express my special gratitude to Wojciech Jaśkowski, for his constant
inspiration, encouragement and, most importantly, useful criticism.
I would also like to thank all the people who has supported me and
who has kept me going throughout the writing of this thesis.

Contents

1 Introduction 9
1.1 Scope and Objectives . 11
1.2 Thesis Organization . 11

2 Coevolution 13
2.1 Coevolution in Nature . 14

2.1.1 Red Queen Effect 15
2.1.2 Evolutionary Arms Race 16

2.2 Coevolution in Computing. 16
2.2.1 Evolutionary Algorithms 17
2.2.2 Coevolutionary Algorithms 19
2.2.3 Coevolution vs. Evolution in Practice. 22

3 Othello and Coevolutionary Reinforcement Learning 27
3.1 Othello . 27

3.1.1 Game Rules . 28
3.1.2 Strategy Representation 29
3.1.3 Previous Research 30

3.2 Conventional Learning Methods 31
3.2.1 Coevolutionary Learning 31
3.2.2 Temporal Difference Learning 32

3.3 Hybrid Coevolutionary Algorithms 35
3.3.1 Coevolutionary Temporal Difference Learning 35
3.3.2 Other Hybrid Approaches 36
3.3.3 Lamarckian Coevolution Perspective 36

4 cECJ Design 39
4.1 ECJ Overview . 39

4.1.1 Evolutionary Process within ECJ 39
4.1.2 ECJ Class Diagram 40
4.1.3 Breeding Mechanism 42

6 Contents

4.1.4 ECJ Utilities . 43
4.2 cECJ Extensions . 43

4.2.1 Extended Evaluation 43
4.2.2 Archive Mechanisms 44
4.2.3 cECJ Class Diagram 45

5 cECJ Implementation 47
5.1 Evaluators . 47
5.2 Archives . 49

5.2.1 Archiving Subpopulation 51
5.2.2 Archive as a Breeding Source 52

5.3 Evaluating Infrastructure 52
5.3.1 Sampling Methods 53
5.3.2 Interaction Schemes and Interaction Results 53
5.3.3 Fitness Aggregation Methods 54

5.4 Test-based Problems . 55
5.4.1 Caching Evaluation Results 55
5.4.2 Sample Problems – Numbers Game and Othello 55

5.5 Objective Fitness . 56
5.5.1 Objective Fitness Calculator. 56
5.5.2 Objective Fitness Statistics 56

5.6 Board Games Interfaces . 57

6 Experiments and Results 59
6.1 Experimental Setup . 59

6.1.1 Methods . 60
6.1.2 Strategy Evaluation 61
6.1.3 Choosing Final Solutions 62

6.2 Main Results . 63
6.2.1 Basic Comparison 63
6.2.2 Best-of-Run Tournament 65
6.2.3 TDL Intensity . 66
6.2.4 Negative Learning Rate 67

6.3 Minor Findings . 69

7 Summary and Conclusions 73
7.1 Future Work . 73

A DVD Content 75

B Sample Parameter Files 77
B.1 Othello Single Population Coevolution 77
B.2 Othello Coevolution with Archive 79
B.3 Othello Coevolutionary TD Learning 81

Contents 7

Bibliography 83

Those who are inspired by a model other than Nature,
a mistress above all masters, are laboring in vain...

Leonardo di ser Piero da Vinci

Chapter 1

Introduction

Nature has always served as a great source of inspiration for scientists and engineers.
The concept of learning from nature and applying biological principles to produce
novel technologies was coined biomimetics (also known as bionics) in the mid-
twentieth century [Bar-Cohen 05]. However, the idea itself is much older. One of the
first documented examples of biologically inspired engineering dates as far back as
Leonardo da Vinci, who examined physiology of birds and fish in his famous designs
of flying and swimming devices. Nowadays, biomimetics has numerous applications
across variety of fields including molecular design of nano-materials, biomechanics,
robotics and computer science. An impressive example, which can be viewed as
a continuation of da Vinci’s work on imitating flying animals, is the development of
autonomous flying robots [Zufferey 08].

In the field of computer science, biology influenced the architecture of the first
digital computer – its inventor, John von Neumann, used the human brain as the
model for his design [Neumann 58]. Understanding how biological organisms process
information and creating algorithms that exhibit human cognitive abilities became
later the main goals of artificial intelligence (AI). Although these primary natural
motivations have been neglected over the years, there is a branch of modern AI aimed
at developing computational models that make use of biological concepts, namely,
bio-inspired artificial intelligence [Floreano 08]. This field includes many innovative
approaches, such as evolutionary computation, artificial neural networks, immune
systems, biorobotics, and swarm intelligence. Despite the common origin, the key
ideas behind these methods are twofold. Some of them, like for instance swarm
intelligence, are examples of biomimetics, that emulate certain aspects of natural
design or the functions of particular organisms or ecosystems. However, all these
characteristics of biological systems, that are worth imitating, are nothing more than
results of natural evolution. It is the evolutionary pressure that throughout billions
of years has been forcing biological systems to be highly efficient and successful to
survive in changing environments [Darwin 59]. Therefore, another modern approach

10 1 Introduction

to AI is to artificially replicate the mechanisms of natural evolution. This idea has
been successfully put into practice by evolutionary algorithms and robotics. In
contrast to traditional biomimetic methods that rely on effects of natural evolution,
simulating evolutionary process leads to alternative novel solutions that potentially
have never appeared in nature.

Evolutionary algorithms are well-known for their successful results in the fields of
optimization and machine learning [Goldberg 89]. Nevertheless, there is a primary,
but often overlooked, difference between evolution simulated by these algorithms
and evolution occurring in nature. Whereas natural evolution does not have a
specified goal and is essentially an open-ended adaptation process, artificial evolution
is an optimization procedure that attempts to find the best solution with respect
to a predefined objective. This difference is especially consequential in domains
where it is difficult to specify an objective or accurately measure its value. Using
evolutionary algorithms with a hand-crafted objective function for such problems
has many shortcomings. In particular, artificial evolution may not be able to match
the diversity and creativity revealed by its natural counterpart. These problems
were addressed by introducing coevolutionary algorithms which, in this context, can
be considered as evolutionary algorithms with biomimetic fitness evaluation.

Artificial coevolution has recently became one of the most promising methods
of bio-inspired AI and has been increasingly applied to many interesting machine
learning tasks. Coevolutionary phenomenon of competitive arms race, that was at
first observed in nature, confirms the general remark that the interplay between
computer science and biology is noteworthy and has great potential. Among main
applications of coevolutionary algorithms are problems with interactive domains
[Ficici 04]. The canonical examples of such problems are board games, which are
particularly appealing since they have always been a test-bed for AI. Indeed, the
ability to play a board game is considered as a sign of intelligence while creating
a machine capable of defeating human players has been a goal of many researchers
for over half a century [Shannon 50, Samuel 59]. Although this goal was achieved
by Deep Blue which in 1997 won a chess game against the world champion Garry
Kasparov, the approach used by the machine in this confrontation was criticized by
Noam Chomsky as being “as interesting as the fact that bulldozer can lift more than
some weight lifter” [Chomsky 93]. More recently the emphasis of game-related AI
research has changed to more “intelligent” methods aimed at better understanding
of game characteristics instead of brute-force traversing the game tree as deep as
possible. Coevolutionary learning perfectly fits in this trend. Moreover, it can be
viewed as even more thought-provoking because it is able to autonomously acquire
knowledge about the problem domain as it does happen in the natural human learn-
ing process. Consequently, similarly to other unsupervised approaches, it makes
possible development of game-playing strategies without human expertise. This
motivated us to perform experiments with coevolution and combine it with another
method capable of autonomous learning, namely, temporal difference learning.

1.1 Scope and Objectives 11

1.1 Scope and Objectives

This study focuses on the fields of evolutionary computation and machine learning.
We present a novel approach for learning game-playing strategies using a combina-
tion of coevolutionary learning and temporal difference learning. Both methods are
capable of learning without human expertise and have shown promising results ex-
hibiting complementary advantages. However, their hybrids have not received much
attention yet, and therefore seem to be relatively innovative. For purposes of testing
our approach, we use the popular board game of Othello.

The main objective of this thesis is to verify experimentally if combining two
different methods of autonomous machine learning may result in better performance
than obtained by each of these methods independently. We have several additional
objectives:

• Review of coevolutionary algorithms, their biological inspirations, applications
in machine learning, benefits and pathologies observed in the previous research.
• Investigation of past experiments with coevolution and temporal difference

methods applied to game learning problems and reported in the literature.
• Analysis of the proposed hybrid approach, its biological analogues, potential

shortcomings, and similar techniques employed in the previous work.
• Design and development of a coevolutionary algorithms library cECJ as an

extension of ECJ evolutionary computation system.
• Presenting the way of conducting experiments and measuring performance of

compared methods.

1.2 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 gives an overview
of the concept of coevolution in nature and presents coevolutionary algorithms as
an alternative to traditional evolutionary approaches. In Chapter 3 we describe the
history and rules of the game of Othello, review the literature pertaining to con-
ventional methods of learning Othello strategies, and introduce our hybrid approach
drawing an analogy to Lamarckian evolution theory. Chapters 4 and 5 present design
and implementation of the created software environment that was used in experi-
ments. Chapter 6 explains the methods that have been used for conducting the
experiments and reports their results. Finally, Chapter 7 summarizes the research
findings, draws conclusions and proposes some directions of the future work.

Chapter 2

Coevolution

This chapter is devoted to the natural phenomenon of coevolution and its artificial
counterpart in computing which has shown promising results on difficult machine
learning problems. To improve intuitive understanding of the coevolution concept,
let us consider the following scenario.

During annual Tour de France cycling race a single cyclist tried to escape from
the peloton1. He was riding 100 km alone, trying very hard to defend from the
chasing group, but eventually he was caught just 5 km before the finishing line.
Despite the huge effort, he lost this stage. As experience shows, a single escapee has
minor chances to win after riding separately for such a long time. It is worth to note
that in the course of this escape, an objective measure of the cyclist’s performance
was available all the time – in the form of a speedometer. However, in this case,
much more important was the relative speed of the cyclist with respect to peloton
riders. Although he could be provided with such information, he had no way to
observe it continuously (unless he was riding in the peloton).

Next day, the same cyclist decided to make one more try and started escaping.
However, this time five other riders followed him immediately. They all started co-
operating in the same manner as the peloton does. Indeed, riders in a group can
save a lot of energy by riding near each other. A traveling peloton can be compared
to birds flying in a V-shaped formation. Such cooperation helps birds, as well as
cyclists, in covering long distances efficiently, because only individuals in the front
are exposed to higher loads while the rest can stay out of the wind. A rotation
between individuals on different positions in the formation causes that physical fa-
tigue is spread equally among group members. Returning to the considered escapees,
thanks to their cooperation they managed to keep away from the chasing peloton.
However, a few kilometers before the finish, when they were already quite exhausted,
the cooperation ended because each of them wanted to win individually. The last
fragment of the race they were riding neck to neck. Since all riders were really close
to each other, they were working even harder because they felt they could win. It is
their inner competition that allowed them to avoid being caught at the last meters.

1Peloton is a French word for “a densely packed group of cyclists”.

14 2 Coevolution

Although the cyclist which initiated the escape did not win, he was in the top six,
that is much better result than the day before.

As we have seen above, both competition and cooperation between individuals
may yield benefits. Such situation is also observed in nature but there the scope
of the relationship may be broader than a single group. By definition, coevolution
refers to simultaneous evolution of two or more closely related populations of dif-
ferent species within the same environment. Similarly to peloton riders, there is a
variety of ways in which individuals interact with each other. Natural coevolution
is discussed in Section 2.1, while biologically-inspired competitive and cooperative
coevolutionary algorithms are presented in Section 2.2.

2.1 Coevolution in Nature

Every living organism in the natural world exists in an environment with which it
interacts. Together with all other life forms in a given area it forms an ecosystem
where each species has its own place known as ecological niche. The key fact is
that no organism is isolated from its surroundings. Indeed, there is a variety of bio-
logical interactions that occur between individual organisms or whole species living
in the same ecosystem. These interactions can be classified by effect they have on
each partner. Examples of such relationships with different consequences on partic-
ipating organisms include mutualism, antagonism and commensalism. Mutualism
occurs when two or more species derive mutual profit (e.g. pollination) whereas
commensalism benefits only one of them and the other is not significantly harmed
(e.g. inquilinism – phenomenon of using a second organism for housing). In antag-
onistic interactions like parasitism or predation one species derives fitness benefit at
the expense of another.

The second way of classifying biological interactions is more general and leads
to distinguishing competition and symbiosis. Competition can occur at multiple
levels of biology (i.e., intra- or inter-specific) and it is caused by limited amount of
resources like food, light or space, available in the environment. Organisms must
compete for access to these resources just in order to survive. Competition for sur-
vival and reproduction is considered as a major force behind Darwinian principle
of natural selection [Darwin 59]. Competition winners have greater chances to pro-
duce offspring and pass on traits that give them advantages over their opponents.
This idea was extended by Gause who formulated the law of competitive exclusion
principle [Gause 34]. According to this law, competing species cannot stably coexist
in the same ecological niche. This leads to extinction of one of the competitors or
its evolutionary adaptation to different niche. Besides competition, organisms can
also respond to natural selection by cooperating with each other. Such coopera-
tion can be a result of engagement in mutually beneficial symbiosis. Margulis and
Sagan claim that this kind of interaction has even greater impact on evolution than
competition [Margulis 02].

2.1 Coevolution in Nature 15

Regardless of the kind and consequences, all these relationships play critical role
in natural coevolution which is defined as “reciprocally induced evolutionary change
between two or more interacting species or populations” [Price 96]. In coevolution,
the reproductive success of each individual depends on the outcomes of its interac-
tions with other evolving individuals in the same environment. The fitness landscape
of coevolving populations is coupled – fitness of each organism is determined, at least
partially, by coevolving organisms [Miconi 08]. In this way each species exerts selec-
tive pressure on the others and thereby influences their evolutionary development.
Since natural selection promotes the fittest individuals, each species evolution is
aimed at outperforming the competition or at working well in a cooperation, because
such behaviors are rewarded. In the long run, this leads to successive mutual adap-
tations which can have diametrically different results. There are two interesting
phenomena in nature related to the competitive form of coevolution, which is our
main interest – Red Queen Effect and Evolutionary Arms Race. It is important to
note that these phenomena have equivalents in artificial coevolution and they will
be presented in Section 2.2.

2.1.1 Red Queen Effect

One consequence of coevolution is that evolutionary improvements of particular
species are negated by changes worked out by coevolving parties. Adaptations which
were primarily supposed to increase fitness and let species obtain reproductive suc-
cess, do not necessarily have an influence on the overall situation. Although the
relative fitness of coevolving individuals is not changed significantly, this evolution-
ary effort is still indispensable for each species just in order to avoid extinction. This
situation in nature is represented by the the metaphorical Red Queen from Lewis
Carroll’s “Through the Looking-Glass” ([Carroll 87], p. 36):

“Well, in our country,” said Alice, still panting a little, “you’d
generally get to somewhere else – if you run very fast for a long time,
as we’ve been doing.” “A slow sort of country!” said the Queen. “Now,
here, you see, it takes all the running you can do, to keep in the same
place. If you want to get somewhere else, you must run at least twice as
fast as that!”

The same principle refers to nature, where each species must constantly “run”
(evolve) if it wants to keep its place in the ecosystem. The evolutionary version
of this rule is known as the Red Queen Hypothesis proposed by Leigh Van Valen
[Van Valen 73]. This hypothesis says that the sum of absolute fitnesses of a group of
interacting species is constant. The absolute fitness can be measured not in terms
of its reproductive success relative to some other organism, but in terms of en-
ergy available for expansion. Expansion, in turn, can take different forms including
reproduction (as in conventional thinking of fitness) and an increase in body size.

16 2 Coevolution

2.1.2 Evolutionary Arms Race

Regarding the Red Queen Hypothesis, an important question arises of what are
results of successive adaptations in competing populations. The idea of evolution-
ary arms race is expressed by the belief that such mutual evolutionary changes of
coevolving species lead to an overall progress of involved parties. An example of
the arms race is competitive coevolution of predators and preys, for instance, polar
bears and seals. A new defensive trait evolved by preys (cautiousness of seals) can
be compensated only by developing better offensive trait by predators (stealth of
bears). Although none of the competitors become relatively more successful, this
race results in absolute improvements of their behavior.

To sum up the two coevolutionary hypotheses presented above, we will refer to
the famous work of Dawkins and Krebs ([Dawkins 79], p. 506):

As the arms race progresses and predators “improve”, this does not
necessarily mean that they catch more prey. The prey lineage, after all, is
improving too. There seems to be no general reason to expect the average
success of animals at out-running or out-witting contemporary enemies,
victims, prey or competitors, to improve over evolutionary time. Van
Valen has put this point more generally in his “Red Queen Hypothesis”.
But if modern predators are in general no better at catching modern prey
than Eocene predators were at catching Eocene prey, it does at first sight
seem to be an expectation of the arms race idea that modern predators
might massacre Eocene prey. And Eocene predators chasing modern prey
might be in the same position as a Spitfire chasing a jet.

2.2 Coevolution in Computing

Coevolution has been introduced into the field of artificial intelligence as an al-
ternative to traditional Evolutionary Algorithms. Thus, we need to inspect these
well-established algorithms (see Section 2.2.1) before we can explore in depth artifi-
cial coevolution. In Section 2.2.2 we present an overview of coevolutionary methods
and distinguish differences from ordinary Evolutionary Algorithms. Finally, in Sec-
tion 2.2.3 we discuss practical pros and cons of both approaches in practice with
respect to a sample problem of learning game playing.

There are two main types of coevolutionary algorithms, namely, Competitive Co-
evolutionary Algorithms and Cooperative Coevolutionary Algorithms (CCEA). The
difference between them concerns the character of relationships between coevolving
individuals (symbiotic cooperation or competition). Since we focus on the compet-
itive form of interactions in this work, whenever the term “coevolution” is used, it
shall be interpreted as competitive coevolution. The reader interested in cooperative
coevolutionary algorithms is referred to the work of Potter and De Jong [Potter 00]
and Wiegand et al. [Wiegand 01].

2.2 Coevolution in Computing 17

2.2.1 Evolutionary Algorithms

Evolutionary Algorithms (EA) are stochastic search and optimization metaheuristics
which mimic the process of natural evolution including mechanisms such as genetic
recombination, mutation, reproduction or selection [Bäck 97a, Bäck 97b, Eiben 03].
Although there are many different variants of EA, the common underlying ideas
behind all these techniques are the same:

• EA utilize the collective learning process of a population of individuals. Each
individual represents a candidate solution for a given problem, i.e., a search
point in the space of potential solutions. Thus, in contrast to several other
metaheuristics which process single search point at time, EA work on a set of
concurrent solutions and can easily be parallelized.
• The offspring of population individuals is generated by randomized process

that models natural phenomena of mutation and recombination. The former
corresponds to self-replication of slightly modified individuals, while the latter
exchanges information between two or more existing individuals.
• The survival of the fittest principle is used in order to refine the population

of solutions iteratively. Fitness, which is considered as a measure of quality,
is assigned to individuals by means of evaluating them in the environment.
According to this value, the selection process favors better individuals to re-
produce over those that are relatively worse.

A basic scheme of an evolutionary algorithm is illustrated in Algorithm 1. In
the first steps, a population of candidate solutions is set up and evaluated according
to the given objective function(s). If multiple such target functions are defined and
all are subject to optimization then this is the case of Evolutionary Multi-Objective
Optimization (EMOO) [Coello 98]. Regardless of the number of objectives, the al-
gorithm use their values to determine an actual fitness of an individual. After the
fitness is assigned, the evolutionary loop is entered and repeated until the termi-
nation condition is met. Fulfilling this condition may depend on the number of
generations passed or a quality of the best individual in the population.

One round in an evolutionary loop corresponds to a single generation in natural
evolution. Firstly, the selection process chooses the most promising individuals to
act as parents of the next generation. Clearly, fitter individuals are picked with
higher probabilities. In the reproduction step, offspring is created by exposing se-
lected parents to genetic operators such as mutation and crossover. Depending on
a replacement scheme, a new generation may be formed as a combination of the old
one and its offspring (preservative selection) or contain only the offspring (extinctive
selection). Algorithm 1 illustrates the second approach known also as generational.
A newly bred population is evaluated. If termination condition is met, the evolution
stops and the fittest individual is returned as a final solution.

18 2 Coevolution

Algorithm 1 Basic scheme of a generational evolutionary algorithm

1: P ← createRandomPopulation()
2: evaluatePopulation(P)
3: while ¬terminationCondition() do
4: S ← selectParents(P)
5: P ← recombineAndMutate(S)
6: evaluatePopulation(P)
7: end while
8: return getFittestIndividual(P)

The family of EA is composed of a few methods that differ slightly in technical de-
tails, but all match the basic scheme presented in Algorithm 1. The most important
difference between these methods concerns so called representation which defines a
mapping from phenotypes onto a set of genotypes and specifies what data structures
are employed in this encoding. Phenotypes are objects forming solutions to the
original problem, i.e., points of the problem space of possible solutions. Genotypes,
on the other hand, are used to denote points in the evolutionary search space which
are subject to genetic operations. The process of genotype-phenotype decoding is
intended to model natural phenomenon of embryogenesis. More detailed description
of these terms can be found in [Weise 09].

Returning to different dialects of EA, candidate solutions are represented typi-
cally by strings over a finite (usually binary) alphabet in Genetic Algorithms (GA)
[Holland 62], real-valued vectors in Evolution Strategies (ES) [Rechenberg 73], finite
state machines in classical Evolutionary Programming (EP) [Fogel 95] and trees in
Genetic Programming (GP) [Koza 92]. A certain representation might be preferable
if it makes encoding solutions to a given problem more natural. Obviously, genetic
operations of recombination and mutation must be adapted to chosen representa-
tion. For example, crossover in GP is usually based on exchanging subtrees between
combined individuals.

The most significant advantage of EA lies in their flexibility and adaptability to
the given task. This may be explained by their metaheuristic character of “black
box” that makes only few assumptions about the underlying objective function which
is the subject of optimization. EA are claimed to be robust problem solvers showing
roughly good performance over a wide range of problems, as reported by Goldberg
[Goldberg 89]. Especially the combination of EA with problem-specific heuristics
including local-search based techniques, often make possible highly efficient opti-
mization algorithms for many areas of application. Such hybridization of EA is
getting popular due to their capabilities in handling real-world problems involving
noisy environment, imprecision or uncertainty. The latest state-of-the-art method-
ologies in Hybrid Evolutionary Algorithms are reviewed in [Grosan 07].

2.2 Coevolution in Computing 19

2.2.2 Coevolutionary Algorithms

Although Evolutionary Algorithms are based on biological evolutionary processes,
most of these methods assume availability of pre-defined static fitness function which
of course does not exist in biology. Indeed, fitness of living organisms is dependent
upon dynamically changing environment in which they interact and coevolve with
other organisms. Coevolutionary Algorithms (CEA) intend to model these inter-
actions and thereby more truly imitate fitness evaluation which occurs in nature.
Such evaluation may be particularly useful for problems for which an objective fit-
ness function is unknown, not known a priori or difficult to compute.

Following above, the fundamental difference between CEA and EA concerns the
process of evaluation; apart from that, both approaches can be considered quite
analogous. Thus, the only thing that must be necessarily changed in Algorithm 1
to transform it to the simplest coevolutionary algorithm is the implementation of
evaluatePopulation(P) function. In CEA, this function has access only to the
outcomes of interactions between coevolving individuals and not to any objective
fitness measure. The abstract notion of interaction denotes here a procedure that
reveals information about a pair (or larger tuple) of candidate solutions. Similarly
to nature, not every pair of individuals from coevolving populations is involved in a
relationship. This issue is addressed in Section 2.2.2.1, where different interaction
schemes are presented. A fitness of an individual is usually calculated by aggregating
the outcomes of all interactions in which it participates into a single value. However,
it is worth to point out that such approach has been recently criticized by many
researchers including Bucci [Bucci 07], who claimed that such aggregation causes the
problem of measurement which may be a reason of many coevolutionary pathologies.

Another difference between CEA and EA results from contextual sensitivity of
evaluation in coevolution. The fitness assigned to an individual relies heavily on the
state of still changing environment and, therefore, candidate solutions appearing
well in one environment may be poor in the other. For this reason, the fitness
is actually only relative, subjective measure of quality [Watson 01]. In CEA, this
subjective fitness is directing selection process, but this do not imply increases in the
objective quality of solutions. Consequently, guaranteeing objective progress is one
of the main challenges for coevolutionary methods. There are several approaches
addressing this issue including coevolutionary archives which are shortly discussed
in Section 2.2.2.2. Note that in EA, thanks to availability of an objective evaluation
function, progress can be obtained by elitism that preserves the best individuals.

In contrast to biology, the term coevolution in computing may also refer to co-
adaptation of individuals within only a single population. However, it has been
shown that using two populations is usually a better idea since “performing is not
the same as informing” ([Bucci 07], p. 4) and, for instance, the perfect strategy
for a game is not the perfect metric for an opponent’s ability. This idea fits into
previously proposed host-parasite (also known as learner-teacher) coevolutionary

20 2 Coevolution

12 2 Coevolution

Algorithm 1 Basic scheme of a generational evolutionary algorithm

P ← createRandomPopulation()
evaluatePopulation(P)
while ¬terminationCondition() do
S ← selectParents(P)
P ← recombineAndMutate(S)
evaluatePopulation(P)

end while
return getFittestIndividual(P)

The family of EA is composed of a few methods that differ slightly in technical
details, but all can be realized with the basic scheme presented in Algorithm 1. The
most important difference between these methods concerns so called representation
which defines a mapping from phenotypes onto a set of genotypes and specifies what
data structures are employed in this encoding. Phenotypes are objects forming so-
lutions to the original problem, i.e. points of the problem space of possible solutions.
Genotypes, on the other hand, are used to denote points in the evolutionary search
space which are subject to genetic operations. The process of genotype-phenotype
decoding is intended to model natural phenomenon of embryogenesis. More detailed
description of these abstractions can be found in [Weise 09].

Returning to different dialects of EA, candidate solutions are represented typi-
cally by strings over a finite alphabet (usually binary) in Genetic Algorithms (GA)
[Holland 62], real-valued vectors in Evolution Strategies (ES) [Rechenberg 73], finite
state machines in classical Evolutionary Programming (EP) [Fogel 95] and trees in
Genetic Programming (GP) [Koza 92]. A certain representation might be prefer-
able if it makes encoding solutions to particular problem more natural. Obviously,
genetic operations of recombination and mutation must be adapted to choosen rep-
resentation. For example, crossover in GP is usually based on exchanging of subtrees
between combined individuals.

The most significant advantage of EA lies in their flexibility and adaptability to
the given task. This may be explained by their metaheuristic character of “black
box” that makes only few assumptions about the underlying objective function which
is a subject to optimization. Another benefit is that EA are claimed to be robust
problem solvers showing roughly good performance over a wide range of problems,
as reported by Goldberg [Goldberg 89].

Especially the combination of EA with problem-specific heuristics including
local-search based techniques, often make possible highly efficient optimization al-
gorithms for many areas of application. Such hybridization of EA is getting popular
due to their capabilities in handling real-world problems involving noisy environ-
ment, imprecision or uncertainty. The latest state-of-the-art methodologies in Hy-
brid Evolutionary Algorithms are described in [Grosan 07].

(a) Round-robin tournament in one-
population coevolution – requires
n(n− 1)/2 interactions, where n = |P|

1

14 2 Coevolution

P

(a) Round-robin in one population - ×

P
1 P

2

(b) Round-robin in two populations

Fig. 2.1: Round-robin tournament interaction scheme

ing competitions between accordingly coupled pairs is the dominant computational
requirement of the evolution process, the competition topology is an important con-
sideration. Different types of topologies were proposed and discussed by Angeline
and Pollack [Angeline 93], Panait and Luke [Panait 02] and Sims [Sims 94b].

Round-robin tournament which is illustrated in Figure 2.1 is a common approach
resulting in the most accurate evaluation. In this pattern each member of each
population interact with every other individual which can serve as a partner. This
requires n(n − 1)/2 competitions in a single-population of P1 members (as shown
in Figure 2.1a) and nm competitions in a two-population setup, where P2 and
m are s.However, such approach is computationally expensive, especially for large
populations. Therefore, more efficient patterns of interactions

Single Elimination Tournament (SET) Tournament interaction scheme is illus-
trated in figure 2.2. This type of interactions is dedicated to coevolutionary algo-
rithms with only one population (or solely inter-population). Alternatively, it can be
extended to be use However, basing on this concept an extension of inter-population
tournament could be designed.

2.2.3 Coevolution vs Evolution in Practice

A question arises: when and why shall we prefer coevolution rather than traditional
evolutionary algorithm. Machine learning. We will consider how EA can be used
for problem which naturally requires coevolution.

Moreover, this inconsistency of EA with natural evolution leads to a serious
problem if, in contrast to optimization, there is no objective function intrinsic to a

14 2 Coevolution

P

(a) Round-robin in one population - ×

P
1 P

2

(b) Round-robin in two populations

Fig. 2.1: Round-robin tournament interaction scheme

ing competitions between accordingly coupled pairs is the dominant computational
requirement of the evolution process, the competition topology is an important con-
sideration. Different types of topologies were proposed and discussed by Angeline
and Pollack [Angeline 93], Panait and Luke [Panait 02] and Sims [Sims 94b].

Round-robin tournament which is illustrated in Figure 2.1 is a common approach
resulting in the most accurate evaluation. In this pattern each member of each
population interact with every other individual which can serve as a partner. This
requires n(n − 1)/2 competitions in a single-population of P1 members (as shown
in Figure 2.1a) and nm competitions in a two-population setup, where P2 and
m are s.However, such approach is computationally expensive, especially for large
populations. Therefore, more efficient patterns of interactions

Single Elimination Tournament (SET) Tournament interaction scheme is illus-
trated in figure 2.2. This type of interactions is dedicated to coevolutionary algo-
rithms with only one population (or solely inter-population). Alternatively, it can be
extended to be use However, basing on this concept an extension of inter-population
tournament could be designed.

2.2.3 Coevolution vs Evolution in Practice

A question arises: when and why shall we prefer coevolution rather than traditional
evolutionary algorithm. Machine learning. We will consider how EA can be used
for problem which naturally requires coevolution.

Moreover, this inconsistency of EA with natural evolution leads to a serious
problem if, in contrast to optimization, there is no objective function intrinsic to a

(b) Round-robin tournament in two-
population coevolution – requires nm
interactions, where n = |P1|, m = |P2|

Fig. 2.1: Round-robin tournament interaction pattern

paradigm [Pagie 97]. In this paradigm, populations of candidate solutions and tests
are interacting with each other; solutions are rewarded for solving tests, whereas
test are rewarded for failing solutions [Ficici 08].

2.2.2.1 Interaction Patterns

In CEA an individual is evaluated on the basis of interactions with other evolving
individuals from the same or different population. At every generation in the course
of evolution, the individuals in populations are paired up by some abstract pattern
known also as competition topology. The role of this pattern is to specify the exact
number and origin of the opponents for each individual. Since simulating competi-
tions between accordingly coupled pairs is the dominant computational requirement
of the evolution process, the competition topology is an important consideration.
Different types of topologies were proposed and discussed by Angeline and Pollack
[Angeline 93], Panait and Luke [Panait 02] and Sims [Sims 94b].

Round-Robin Tournament illustrated in Figure 2.1 is a common approach result-
ing in the most accurate evaluation. In this pattern each member of each population
interacts with every other individual which can serve as a partner. Depending on
the number of populations employed by the algorithm and their roles, the set of
appropriate partners is different. Typically, in one-population coevolution all other
members of the population are used as opponents (see Figure 2.1a), while in two-
population coevolution – all members of the opposite population (see Figure 2.1b).
The primary drawback of this topology is a substantial computational cost, which for

2.2 Coevolution in Computing 21

round 1

round 2

round 3

round 4

an odd player
receives a "bye"

tournament
winner

Fig. 2.2: Single Elimination Tournament

large populations can be unacceptable. Potential improvements include K-Random
Opponent pattern, where instead of competing with all possible opponents only K
of them are chosen randomly. Alternatively, to reduce the cost even more, each
individual could compete only with one opponent which obtained the highest fitness
in the previous generation. This is known as Last Elite Opponent topology.

Figure 2.2 presents Single Elimination Tournament (SET) which is a diamet-
rically different type of interaction pattern. Initially, entire population is in the
competition, individuals are paired at random and play one game per pair. The
losers of the games are eliminated, while the winners advance to the next round of
the tournament and are paired again. If a number of individuals competing in a
certain round is odd, one player receives a “bye” and is promoted without playing a
game. The tournament continues until a single champion remains. The fitness of an
individual equals the number of the round it achieved in competition. This can be
quite noisy fitness measure, because if there is no optimal solution in the population
then it is possible for an average player to win the tournament. Also, this pattern
does not apply easily to multi-population coevolution. However, a great advantage
of this topology is that it needs only n− 1 competitions for a population of size n.

2.2.2.2 Coevolutionary Archives

An archive is a collection of the most promising individuals encountered by the evo-
lutionary process. At every generation, populations are examined by the archive al-
gorithm which selects individuals that should be retained according to implemented
solution concept. Keeping past opponents in the archive allows to achieve historical
progress, which is essentially a realization of the arms race hypothesis [Miconi 09].

Examples of archive algorithms include Hall of Fame [Rosin 97], Incremental
Pareto Coevolution Archive [de Jong 04b], Layered Pareto Coevolution Archive
[de Jong 04a] and MaxSolve [de Jong 05]. The role of archives is clearly identified
by Rosin and Belew in their work concerning Hall of Fame ([Rosin 97], p. 6)

22 2 Coevolution

So, in competitive coevolution, we have two distinct reasons to save
individuals. One reason is to contribute genetic material to future gener-
ations; this is important in any evolutionary algorithm. Selection serves
this purpose. Elitism serves this purpose directly by making complete
copies of top individuals.

The second reason to save individuals is for purposes of testing. To
ensure progress, we may want to save individuals for an arbitrarily long
time and continue testing against them. To this end, we introduce the
‘Hall of Fame’, which extends elitism in time for purposes of testing.
The best individual from every generation, is retained for future testing.

2.2.3 Coevolution vs. Evolution in Practice

An important question arises: when and why shall we prefer coevolution rather
than traditional evolutionary algorithm? As we mention above, EA assume that
an objective evaluation function is available, what stays in conflict with natural
evolution theory. It appears that this inconsistency can lead to serious difficulties
if, in contrast to optimization, there is no objective function intrinsic to a given
problem. This is the case in so-called test-based problems where the quality of a
candidate solution is determined by the outcomes of a large or infinite set of tests
[Bucci 04]. Examples of such problems include learning game-playing strategies and
open-ended evolution [Sims 94a]. Since accurate and efficiently computable fitness
function cannot be easily defined in such circumstances, CEA seems to naturally fit
this class of problems, as we will discuss below.

For purposes of better understanding this issue, let us consider the problem of
evolving chess player. Clearly, this is an example of a test-based problem, where
each test is a game strategy and each interaction consists in playing a game with
one opponent. Obviously, the number of tests in this case is finite but unimagin-
able. Moreover, it is important to note that board games in general are considered
as canonical examples of intrinsically interactive domains which naturally require
coevolution [Ficici 04] .

2.2.3.1 Using Evolutionary Algorithm for a Test-based Problem

Despite difficulties, it is still possible to apply traditional EA to test-based problems,
but it requires designing a metric of quality for evolved solutions, that can be used
as an objective evaluation function. However, constructing a reasonable method of
rating individuals can lead to many potential pitfalls.

A quality of a particular chess strategy can be accurately evaluated by playing
against all other possible strategies. In chess, as well as in most real-world test-
based problems, enumerating the space of possible solutions is impossible or at least
extremely expensive. The easiest way to reduce the computational complexity of
the evaluation process is to choose only a subset of possible strategies as opponents.

2.2 Coevolution in Computing 23

Here, we have two possible approaches – we can randomly sample the set of all
strategies only once before the algorithm starts or more than once, whenever fitness
need to be evaluated. The first approach leads to optimizing performance against
a fixed set of strategies which can reveal very specific style of play and thereby
result in lack of responsiveness to learner’s performance (i.e., regardless of learner’s
abilities, opponents’ abilities are constant). Additionally, since this fixed set of
opponents can be viewed from supervised learning perspective as a training set,
there is a risk of overfitting in this case. The second approach, in turn, results in
the problem of fitness inconsistency because each fitness value is highly dependent
on the specific subset of strategies that happen to be chosen as opponents. Due to
the large number of possible tests, selecting a subset of them which is sufficiently
representative is usually impossible.

Another potential method of evaluating the quality of a chess strategy consists
of competing with an expert player. If the game is deterministic, this idea surely
minimizes the cost of evaluation to a single duel; otherwise, it may be needed to
repeat it several times for statistical significance. It is also possible to introduce
some sort of randomness into a deterministic game to obtain more robust evalua-
tion. Nevertheless, the main disadvantage of this measure is that it relies on the
knowledge of the expert strategy for a particular game and, therefore, require po-
tentially substantial human effort to construct it. Furthermore, a perfect player is
not an ideal trainer [Epstein 94] as it does not provide satisfactory gradient. Since a
beginning learner very rarely wins with an expert, it would be hard to judge which
strategies should be preferred in the evolutionary search.

A slightly different approach, applicable to many test-based problems, is based
on human-designed fitness function. This method requires intimate knowledge of the
problem domain and its precise articulation. For evaluating board games strategies,
it would consist of characterizing different aspects of expert play and observing
these characteristics in behavior of evaluated player. A useful notion here is that
of underlying objectives of a problem [de Jong 04c]. Explicit knowledge of such
objectives would be sufficient to determine the outcomes of all possible tests. Since
they are usually unknown, a hand-designed function may only attempt to estimate
them. The early work of Samuel [Samuel 59], though does not involve evolutionary
algorithm, used a closely related idea of orthogonal set of terms – scoring parameters.
Regarding checkers, these parameters include inability to move and piece advantage.

2.2.3.2 Benefits of Using Coevolution

Coevolution can in principle avoid all biases resulting from the use of a fixed evalu-
ation function for a test-based problem. Regarding the evolution of a chess playing
strategy, fitness evaluation is based on games between evolving players. Clearly, the
set of opponents for each individual is determined by a certain interaction pattern
(see Section 2.2.2.1). To apply the learner-teacher paradigm, two populations could
be used, representing strategies of black and white player, respectively.

24 2 Coevolution

Evaluation in such environment is performed in an adaptive, dynamic manner.
The tests which are used for measuring quality are identified by the search process it-
self. This results in greater responsiveness to learners performance and construction
of learnable gradient [Viswanathan 05]. Consequently, coevolution is believed to
encourage the arms race between coevolving populations. This belief was expressed
among other potential advantages of artificial coevolution by Nolfi and Floreano in
their work concerning evolutionary robotics ([Nolfi 98], p. 2):

First, the co-evolution of competing populations may produce increas-
ingly complex evolving challenges. As discussed by Dawkins and Krebs,
competing populations may reciprocally drive one another to increasing
level of complexity by producing an evolutionary “arms race”. (...) it is
like producing a pedagogical series of challenges that gradually increase
the complexity of the corresponding solutions. (...)

Secondly, because the performance of the individual in a population
depends also on the individual strategies of the other population which
vary during the evolutionary process, the ability for which individuals are
selected is more general (i.e., it has to cope with a variety of different
cases) than in the case of an evolutionary process in which co-evolution
is not involved. (...)

Finally, competing co-evolutionary systems are appealing because the
everchanging fitness landscape, due to changes in the co-evolving species
is potentially useful in preventing stagnation in local minima.

2.2.3.3 Coevolutionary Pathologies

Apart from hypothetical benefits supported by successful applications [Hillis 92,
Sims 94a, Miller 94, Juillé 96], coevolutionary algorithms are also reported to demon-
strate a variety of pathological behaviors including disengagement, cyclic dynamics
and evolutionary forgetting [Paredis 97, Ficici 98, Watson 01]. Although a lot of
algorithmic remedies were proposed to alleviate these pathologies, a considerable
amount of work has been recently focused on identifying their common reason. As
a result, it has been found that among theoretical causes of such misbehaviors are
lack of rigor in implementing the desired solution concept [Ficici 04] and the prob-
lem of aggregate measurement [Bucci 07]. The most often encountered pathologies
are shortly described below.

Disengagement occurs when coevolving populations represent diametrically dif-
ferent levels of performance. In our example, if none of white chess player can win
with any of black players then all of the white players will appear equally poor and
all of the black players equally superior. In such situation, all evolving individuals
in each population obtain the same fitness and cannot be distinguished regarding
their level of play. Consequently, this leads to a loss of fitness gradient.

2.2 Coevolution in Computing 25

Cyclic dynamics, also known as Red Queen dynamics or mediocre stable states,
is a problem caused by intransitivity in the problem domain. The best known ex-
ample of a problem with such property is the game of Rock-Paper-Scissors. The
phenomenon of cyclic dynamics occurs when individuals continuously change (pos-
sibly improving their relative fitness), but without making overall objective progress.
This corresponds to getting stuck in a local optimum of the coevolutionary search.

Evolutionary forgetting can be a result of some of the misbehaviors described
above. This pathology refers to the situation when “previously acquired and subse-
quently discarded trait is once again desired” [Ficici 04]. In this context, a “trait”
represents any measurable aspect of behavior.

Chapter 3

Othello and Coevolutionary
Reinforcement Learning

In this chapter we describe the game of Othello and discuss the methods of learning
game-playing strategy. After introducing the game rules and its historical back-
ground, we present the canonical strategy representation of weighted piece counter
(WPC). Next, we try to answer the question of how to produce a competitive Othello
player by means of machine learning. We focus on the approaches which can be con-
sidered the most intelligent, as they are able to produce nontrivial strategies starting
with zero knowledge. These learning algorithms differ significantly from the meth-
ods developed in the early years of games-related AI research. For this reason, we
present also previous work on Othello-playing computer programs and discuss how
the emphasis of the research has changed throughout the years. Among examples of
modern approaches to learning Othello strategies are Temporal Difference Learning
(TDL) and Coevolutionary Learning (CEL). In Section 3.2 we review the literature
in order to describe how these methods can be applied for this problem. Finally, in
Section 3.3 we introduce a hybrid approach of Coevolutionary Temporal Difference
Learning and draw an analogy to Lamarckian evolution theory.

3.1 Othello

A motto for the game of Othello says:

A minute to learn . . . a lifetime to master

Indeed, Othello is a very simple classic board game. However, despite the apparent
simplicity, Othello is at the same time one of the most challenging games with
numerous tournaments and regular world championship matches. The exact origin
of the game is unknown but rumors say that it arose from an old Chinese game
called Fan Mian. Certainly, Othello is based upon two English games marketed
in 19th century – Annexation and Reversi designed by John W. Mollet and Lewis
Waterman, respectively [Parlett 99].

28 3 Othello and Coevolutionary Reinforcement Learning

(a) Starting board configuration (b) Board state after black player’s move

Fig. 3.1: Examples of Othello board configurations

The modern rules of Othello, which are formally adopted around the world now,
were invented by Japanese salesman Goro Hasegawa in 1971. His father named the
game after the classical play written by William Shakespeare (“Othello, the Moor
of Venice”) to remark that the game was full of dramatic reversals caused by rapid
changes in dominance on the board. Othello had very quickly gained considerable
popularity in Japan and it started to spread to Europe and North America.

3.1.1 Game Rules

The game of Othello is played by two players on an 8 × 8 board. Typically, pieces
are disks with a white and black face, each side representing one player. Figure
3.1a shows the initial state of the board – each player starts with two stones in the
middle of the grid. The black player moves first and has four possible moves which
are illustrated as shaded locations. Players make moves alternately until the board
is completely filled or until neither player is able to move. The goal of the game is
to have a majority of squares occupied by own pieces. If both players have the same
number of disks then the game is a draw.

A legal move consists of placing a piece on an empty square and flipping appro-
priate opponent’s pieces to the color of the current player. To place a new piece on
a certain square, two following conditions must be fulfilled. Firstly, a position of
the piece must be adjacent to position occupied by opponent’s piece. Secondly, at
least one straight line must exist between the new piece and some other piece of the
current player, with a contiguous sequence of opponent’s pieces in between. This
line can be formed vertically, horizontally, or diagonally. After placing the piece,

3.1 Othello 29

all opponent’s pieces lying on such lines are flipped. If multiple lines exist, flipping
affect all of them. This makes the game particularly “dramatic” – in a single move
a player may gain a large number of pieces and swap players’ chances of winning.
A legal move requires flipping of at least one of the opponent’s pieces. If a player
has no valid moves then he passes his turn and his opponent plays a second turn in
a row. However, if a player has one or more legal moves available he may not pass
his turn. An exemplary move of the black player and the resulting board state are
presented in Figure 3.1b.

3.1.2 Strategy Representation

One of the main issues to consider when learning game strategy is the architecture
of the learner, which is to a great extent determined by the strategy representa-
tion. There is a multitude of reasonable strategy representations; here we rely on
a heuristic assumption that to judge the utility of a particular board state it is
enough to independently consider the occupancy of all board locations. This prin-
ciple is implemented by the position-weighted piece counter (WPC) representation
which was commonly used in previous research [Lucas 06, Runarsson 07, Kim 07a].
The WPC is a linear weighted evaluation function that assigns a weight wi to each
board location i and uses scalar product to calculate the utility f of board state b:

f(b) =
8×8∑
i=1

wibi. (3.1)

The input values bi depends on the occupancy of particular board locations, being
0 for empty location, +1 for black piece and -1 for white piece. The output of this
function indicates how favorable is a given board state b for a certain player. The
players interpret this value in a complementary manner: the black player prefers
moves leading to states with larger values, while smaller values are favored by the
white player.

The main advantage of WPC is its simplicity resulting in a very fast evaluation.
Regarding the game of Othello, only 64 weights need to be learned. Moreover, a
strategy represented by WPC can be often easily understood just by inspecting the
weight values. For example, Figure 3.2 shows the weights matrix of an exemplary
heuristic player. As it can be seen, this player focuses at taking possession of the
corners because they are given the highest values. Conversely, locations adjacent to
the corners are avoided by this strategy.

Alternatively, this type of representation can be considered as a simple artificial
neural network composed of a single linear neuron connected to 64 inputs, without
any hidden layers. Since a direct coding scheme is employed, exactly one input for
each board position exists.

30 3 Othello and Coevolutionary Reinforcement Learning

 1.00 -0.25 0.10 0.05 0.05 0.10 -0.25 1.00
-0.25 -0.25 0.01 0.01 0.01 0.01 -0.25 -0.25
 0.10 0.01 0.05 0.02 0.02 0.05 0.01 0.10
 0.05 0.01 0.02 0.01 0.01 0.02 0.01 0.05
 0.05 0.01 0.02 0.01 0.01 0.02 0.01 0.05
 0.10 0.01 0.05 0.02 0.02 0.05 0.01 0.10
-0.25 -0.25 0.01 0.01 0.01 0.01 -0.25 -0.25
 1.00 -0.25 0.10 0.05 0.05 0.10 -0.25 1.00

Fig. 3.2: The heuristic player’s strategy represented by WPC

3.1.3 Previous Research

The game of Othello has been a subject of computational intelligence research for
more than 20 years. A significant interest in this game may be explained by its large
state space complexity and high divergence rate causing that it remains unsolved –
a perfect Othello player has not been developed yet.

Conventional Othello-playing programs are based on a thorough human analy-
sis of the game leading to sophisticated hand-crafted evaluation functions. These
programs often incorporate supervised learning techniques with use of large expert-
labeled game databases and efficient look-ahead game tree search. One of the first ex-
amples representing such approach was BILL [Lee 90]. Besides using pre-computed
tables of board patterns, it employed Bayesian learning to build in so called features
into evaluation function estimating the probability of winning. Today, one of the
strongest Othello programs is Logistello [Buro 95, Buro 02] which also makes use of
advanced search techniques but also applies a several new approaches for the con-
struction of evaluation features and learning from previous games. Nevertheless, it
still relies on the powerful hardware which is one of the main factors that allowed
Logistello to beat the world champion Takeshi Murakami in 1997 [Buro 97].

Recently, the emphasis of the research has moved towards better understanding
of which types of learning algorithms and player architectures work best. This is
the aim of CEC Othello Competitions1 where the ply depth is limited to one to
eliminate previous approaches based upon brute-force game tree search. Although
the standard WPC representation is among strategy representations acceptable by
competition rules, all the best players were based on more complex architectures
involving number of parameters. Examples of such architectures are: symmetric
n-tuple network, multi-layer perceptron (MLP) and spatial MLP.

Another interesting issue is learning without any reference to human knowledge
or game strategy given a priori. This task formulation is addressed by methods such
as Temporal Difference Learning (TDL) and Coevolutionary Learning (CEL) which
were investigated in the context of Othello by Lucas and Runarsson [Lucas 06]. That
study inspired our research and will be presented in the following section.

1http://algoval.essex.ac.uk:8080/othello/html/Othello.html

3.2 Conventional Learning Methods 31

3.2 Conventional Learning Methods

Most machine learning systems require a considerable amount of human knowledge,
introduced by the designer, in order to succeed. This knowledge, which is a form
of inductive bias [Mitchell 97], may be expressed by an appropriate representation,
specific search operators, or a fixed training environment which provides a good
learning gradient. However, when there is a little or no prior understanding of the
problem domain, such techniques of bias engineering become impractical. This issue
can be addressed by approaches that are able to learn from scratch, without any
human expertise. Examples of such methods are Coevolutionary Learning (CEL)
and Temporal Difference Learning (TDL).

In this section we discuss theoretical foundations of CEL (Section 3.2.1) and TDL
(Section 3.2.2) and their application to learning game-playing strategies. Through-
out the following discussion, we will refer to works of Lucas and Runarsson [Lucas 06,
Runarsson 05], where the WPC strategy representation is employed to acquire posi-
tion evaluation functions for the games of Othello and small-board Go. By reviewing
the experiments reported in these publications, we show how TDL and CEL can be
applied in practice.

3.2.1 Coevolutionary Learning

Coevolutionary learning (CEL) is defined as a search procedure that involves a pop-
ulation of learners coevolving with the learning environment such that continuous
progress results from this interaction [Juillé 98]. As a result, it is possible to start
with a basic learning environment, created without expert knowledge, because it gets
more challenging as soon as learners improve themselves. Coevolutionary learning
is considered as having great potential because of the competitive arms race (see
Section 2.1.2) which can provide a properly constructed learning gradient.

Regarding the task of learning game-playing strategy, CEL typically starts with
generating a random initial population of player individuals. Population members
play games with each other, and the results of these confrontations determine the
fitness which is assigned to each player. The best strategies are selected, undergo
genetic modifications such as mutation or crossover, and its offspring replace former
individuals. Depending on a particular replacement scheme, either the whole popula-
tion or only its part is replaced. Although this general scheme seems straightforward
and easy to apply in practice, there is still many design choices to be made. Some of
these choices concern the overall evolutionary computation domain (population size,
variation operators, selection scheme, etc.) while the other are related particularly
to coevolutionary learning (interaction pattern, fitness aggregation method, etc.).
Certainly, CEL embraces a broad class of algorithms, some of which we shortly
review in following.

32 3 Othello and Coevolutionary Reinforcement Learning

In their influential study on CEL in games, Pollack and Blair [Pollack 98] used
the simplest evolutionary algorithm – a random hill-climber – to successfully address
the problem of learning backgammon strategy. The algorithm is essentially a basic
Evolution Strategy operating on a population of size two (i.e., (1 + 1) ES). Similar
approaches of (1 + λ) and (1, λ) ES were reused in the referred work of Lucas and
Runarsson [Lucas 06] to learn the Othello strategy. An important design choice
adapted from the previous research was the geometrical parent-child averaging. In-
stead of replacing a parent by the best of the new offspring, the parent’s strategy is
only adjusted towards the child strategy by linear combination. Moreover, usage of
self-adapting mutation strength was considered, but eventually it was utilized only
in the context of evolving small-board Go players [Runarsson 05].

Various forms of CEL have been successfully applied to many two-person games
including Blackjack [Caverlee 00], Checkers [Fogel 02], NERO [Stanley 05], Pong
[Monroy 06], AntWars [Jaśkowski 07] and a small version of Go [Lubberts 01].

3.2.2 Temporal Difference Learning

Temporal Difference Learning (TDL) is a prediction method proposed by Sutton
[Sutton 88] which has become a popular approach for solving reinforcement learning
tasks. One of the most spectacular successes of temporal difference learning in game
playing is undoubtedly Tesauro’s TD-Gammon [Tesauro 95]. This influential work
has triggered off a lot of research in reinforcement learning and TD methods. Among
successful application of TDL to Othello are [Leouski 95, Manning 07]. Before we
explore details of applying this method to learning game-playing strategies, we need
to introduce reinforcement learning paradigm.

3.2.2.1 Reinforcement Learning Paradigm

Reinforcement learning (RL) is a machine learning paradigm focused on solving a
general class of sequential decision tasks. In this specific genre of learning problems,
an agent (learner) dynamically interacts with an unknown environment by making
decisions at discrete time steps. At each time step t, the agent receives current state
of the environment, st ∈ S, and on that basis selects an action at from the set of
available actions in this state A(st). As a consequence, the system enters a new state
st+1 and the agent receives a real-valued reward rt+1 which indicates desirability of
the last decision and the resulting state. The objective is to find an optimal decision
policy which describes a mapping from system states to probabilities of selecting
each possible action. Optimal strategy maximizes the cumulative total reward of a
decision sequence starting from randomly chosen state, discounted over time with a
factor γ ∈ [0, 1]. This goal is specified by the expected reward:

E

[∞∑
t=0

γtrt

]
. (3.2)

3.2 Conventional Learning Methods 33

Reinforcement learning, in contrast to supervised learning, do not need a human
supervision or any examples of correct behavior. The learner is not told how to
respond to given situation, but instead it must discover which actions yield the
most reward by trying them. Through such trial and error search the agent gathers
experience about possible system states, actions, transitions and rewards. However,
very rarely a learner receives exact information about its performance directly after
each action – usually such information is delayed. For example, in the game of chess,
it is difficult to deduce how single decisions influence the overall game situation, and
thereby, the learner may not receive any rewards until the end of the game. Since
actions may affect all subsequent rewards, there is a problem known as temporal
credit assignment. The agent must determine which actions are to be credited with
producing the eventual rewards. Another difference from supervised learning is that
the evaluation of the system is often concurrent with learning – there is no separate
training phase. As a result at the beginning of the learning process the agent has
to operate despite significant uncertainty about the environment it faces.

The characteristic feature of reinforcement learning is the trade-off between
exploration and exploitation. On the one hand, to obtain a lot of reward, the agent
must favor exploiting states and actions that it has tried in the past and already
learned that they yield high reward. On the other hand, the only way to discover
such actions, that are effective in producing a reward, is to explore unknown states
and actions. Thus, in order to achieve successful learning, the agent must keep a
proper balance between these two experimentation strategies.

Due to flexibility of the problem specification, potential applications of rein-
forcement learning are numerous. RL methods are especially useful when precise
domain knowledge is not available or is costly to obtain. Examples include con-
trolling mobile robot, optimizing factories operation and playing board games. The
reader interested in more detailed description of reinforcement learning paradigm is
referred to the works of Sutton and Barto [Sutton 98], Moriarty et al. [Moriarty 97],
and Kaelbling et al. [Kaelbling 96].

3.2.2.2 Temporal Difference Method

The family of TD(λ) learning procedures is dedicated for prediction learning prob-
lems – that is for estimating the future behavior of an incompletely known system
using the past experience. The basic idea is that learning occurs whenever system’s
state changes over time and it is based on the error between temporally successive
predictions. The goal of learning is to make the preceding prediction to more closely
match the current prediction (taking into account distinct system states observed
in the corresponding time steps). In general, prediction at a certain time step can
be considered as a function of two arguments: the outcome of system observation
and the vector of modifiable weights.

34 3 Othello and Coevolutionary Reinforcement Learning

The TD algorithm is expressed by the following weight update rule:

∆wt = α(Pt+1 − Pt)
t∑
k=1

λt−k∇wPk, (3.3)

where λ is the learning rate, Pt is the prediction at time t, and the gradient ∇wPt
is the vector of partial derivatives of Pt with respect to each weight. This general
formulation of TD takes into account the entire history of the learning process; in
the case of TD(0), the weight update is determined only by its effect on the most
recent prediction Pt:

∆wt = α(Pt+1 − Pt)∇wPt. (3.4)

Regarding the problem of learning Othello strategy represented by a WPC, Pt
estimates the chances of winning from the game state bt at time t. The WPC
function f computes the dot product of the board state vector bt and the weight
vector w (see equation 3.1), and the obtained value is subsequently mapped to a
closed interval [-1, 1] using hyperbolic tangent, so that Pt has the form:

Pt = tanh(f(bt)) = 2
exp(−2f(bt)) + 1 − 1 (3.5)

By applying (3.5) to the TD(0) update rule (3.4) and calculating the gradient,
we get the change of weight wi at the time step t:

∆wit = α(Pt+1 − Pt)(1− P 2
t)bi (3.6)

If the state observed at time t+ 1 is a terminal, then the exact outcome of the game
is known and the final result can be used instead of the prediction Pt+1. The result
value is: +1 if the winner is Black, -1 if White, and 0 when the game ends in a draw.

The process of learning consists of applying above formula to the weights of
WPC vector after each move. The training data (i.e., collection of games) according
to which the presented algorithm can proceed, may be obtained for example by self-
play. This is a popular technique whose major advantage is that it does not need
anything besides the learning system itself. During game play, moves are selected
on the basis of the most recent evaluation function.

Othello is a deterministic game, thus the outcome and the course of the game
between certain players is always the same. This is unfavorable, because it reduces
the number of game trees to be explored. To remedy this situation, at each turn,
a random move is forced with certain probability. After such a random move, no
weight update occurs.

3.3 Hybrid Coevolutionary Algorithms 35

3.3 Hybrid Coevolutionary Algorithms

The past results of learning WPC strategies of Othello [Lucas 06] and small-board
Go [Runarsson 05] demonstrate that TDL and CEL exhibit complementary features.
The main observation is that TDL learns much faster but it fails to converge to its
best results. Moreover, the best performance of TDL player is achieved after just
a several hundred of games and later it stays at the same level or even degrades
despite processing millions of training games. This is in sharp contrast with CEL
which progresses slower, but, if properly tuned, eventually outperforms TDL.

Therefore, it sounds reasonable to combine these approaches into one hybrid
algorithm exploiting advantages revealed independently by each method. To benefit
from the complementary advantages of TDL and CEL we propose a method termed
Coevolutionary Temporal Difference Learning. We present this method in Section
3.3.1. We also review previous approaches basing on similar ideas in Section 3.3.2.
It is interesting to note that, in general, such approach to machine learning can
be considered as a counterpart of Lamarckian evolution theory in nature, which we
briefly describe in Section 3.3.3.

3.3.1 Coevolutionary Temporal Difference Learning

Coevolutionary Temporal Difference Learning (CTDL) maintains a population of
players and alternately performs temporal difference learning and coevolutionary
learning. In the TD phase, each player is subject to a self-play TD(0). Then, in the
CEL phase, individuals take part in a round-robin tournament and each of them
receives a (subjective) fitness. Finally, a new generation of individuals is obtained
using standard selection and variation operators and the cycle repeats.

However, there is one potential pitfall of the idea presented above resulting from
different aims of both learning algorithms. TD methods attempt to learn the real
utility function describing chances of winning from each state, whereas CEL strive
only to find a relative ordering on the set of these states. Following above, both
methods are trying to solve a bit different problems [Moriarty 97]. Consequently,
the simplest hybridization may lead to a clash since each method will guide the
learning process in a different direction. An important consideration in this situ-
ation concerns a proper balance between number of games played in each phase.
Intuitively, it might seem that it should be equal to give each method fair chances.
Note, however, that CEL uses only the information about the final game result while
TDL exploit precisely every piece of knowledge contained in a single move. Hence,
the CEL is expected to learn much faster and, therefore, the number of games played
by this method should be potentially much smaller. This issue will be thoroughly
investigated in Chapter 6.

36 3 Othello and Coevolutionary Reinforcement Learning

3.3.2 Other Hybrid Approaches

Although temporal difference and widely considered evolutionary computation are
known for good results in learning games strategies, their hybrids have been occa-
sionally considered in past. Kim et al. [Kim 07b] trained a population of neural
networks with TD(0) and used the resulting strategies as an input for the standard
genetic algorithm with mutation as the only variation operator. This method was
based on the winning entry of CEC 2006 Othello Competition.

In another work, Singer has shown [Singer 01] that reinforcement learning may be
superior to random mutation as an exploration mechanism. He applied his concept
to produce Othello-playing strategies represented by 3-layer neural networks. Simi-
larly to our approach, the training procedure consists of successive learning phases
followed by evolutionary phases. In the learning phase, a round robin tournament is
played 200 times with different learning rates. During tournament games, Othello
players modify the weights of their neural networks with every single move according
to the standard backpropagation algorithm. The tournament results in this phase
are discarded. In the evolutionary phase only one round-robin tournament is ar-
ranged and its results are used to determine a fitness of each player. The key idea
of Singer’s genetic algorithm is the concept of feature-level crossover. Mutation as
a variation operator plays a minor role due to very low mutation probability. The
experiment with this method was claimed to be moderately successful; it yielded
a program that is competitive with an intermediate level human-designed Othello-
player. Nevertheless, the author have not made any comparison with preexisting
methods. It seems that the emphasis of his experiment has been put mainly on
reinforcement learning since the number of games played in a single learning phase
is much larger than in evolutionary phase.

3.3.3 Lamarckian Coevolution Perspective

The idea introduced above can be considered as a form of coevolutionary Memetic
Algorithm. Memetic Algorithms are hybrid approaches coupling a population-based
global search method with individual learning procedures capable of performing
local improvements. Since these algorithms usually employ evolutionary search,
they are often referred to as Lamarckian Evolution or Genetic Local Search. Before
we describe technical details, we need to introduce Lamarckian evolution theory.

Jean-Baptiste de Lamarck published his theory of evolution in 1801, almost 60
years before Darwin’s seminal work On the Origin of Species appeared. In contrast
to well-known principles of natural selection, Lamarck stated that evolution is di-
rected by individuals adapting to their environments over the course of their lifetime
and passing these adaptations on to offspring. This can be interpreted as a concept
of the inheritance of acquired traits [Burkhardt 77]. Although this theory of adap-
tation was finally discredited in the field of biology, it was successfully implemented
within evolutionary computation systems.

3.3 Hybrid Coevolutionary Algorithms 37

Lamarckian Genetic Algorithms (LGA) alternately perform evolutionary search
for the population and local search for individual solutions. Heuristic local search can
be viewed as analogous to learning that occurs during an organism’s lifetime. Such
algorithms are considered very fast and outperform pure evolutionary approaches on
many problems [Dozier 98, Katayama 00]. However, besides reporting good results
it was also observed that Lamarckian evolution may encourage premature conver-
gence to local optima [Whitley 94]. An interesting remedy to this problem is incor-
porating so called Baldwin Effect [Baldwin 96], which is consistent with Darwinian
theory and regarded as real phenomenon occurring in nature. The underlying idea
is that individuals can learn but without altering their genotypes. Thus, the only
effect of local refinements is changing the fitness landscape – selection will favor
individuals with increased capacity for learning new skills.

In this context, our Coevolutionary Temporal Difference Learning is an example
of what might be termed Lamarckian Coevolution or Lamarckian Coevolutionary
Algorithm. The reinforcement learning phase can be treated as a form of local search
technique improving individuals, especially as TD(0), which we used, is actually a
gradient-descent method. We find this observation very interesting, as it enables
us to perform local search in coevolution, where the fitness function is not given
explicitly and implementing typical local search is nontrivial. Note, however, that
this technique cannot be used for all coevolutionary problems, but only for these
where Temporal Difference Learning is applicable. Moreover, we demonstrated only
how to use this technique in single-population coevolution. Using the same idea for
two-population coevolution is a promising further research idea, because it would
open the possibility to use more advanced archive methods such as LAPCA and
IPCA [de Jong 07] that could be beneficial.

Similarly, to Lamarckian Genetic Algorithms, in our Lamarckian Coevolution,
the most important settings are the intensity and frequency of individual learning.
These parameters define the inherent tradeoff between exploration and exploitation.
If the reinforcement learning stage (responsible for exploitation) is too intensive
then it can lead to rapid convergence to a local optimum and the coevolutionary
stage (performing exploration) would be unable to jump out of this optimum in this
case. There are several interesting directions of future work concerning the issue of
Lamarckian Coevolution. For example, one appealing possibility concerns investi-
gating the influence of including the Baldwin effect into Coevolutionary Temporal
Difference Learning method.

Chapter 4

cECJ Design

This chapter presents an overview of cECJ – co-Evolutionary Computation in Java.
cECJ is a coevolutionary algorithms library built upon ECJ, a well-known freeware
evolutionary computation research system in Java created at George Mason Univer-
sity by Sean Luke et al. [Luke 08]. Although there is a coevolve package included
in the standard ECJ distribution, it provides only basic coevolutionary methods
and it is not prepared to be extended. Moreover, this module had been designed be-
fore the modern archive-based coevolutionary algorithms were developed. Because
it would be quite difficult to reuse this implementation, building a completely new
software package was required.

4.1 ECJ Overview

ECJ system supports a variety of evolutionary computation techniques including
genetic algorithms, genetic programming, evolutionary strategies and differential
evolution. Moreover, independent contributors provide also a few extensions of the
system such as cartesian genetic programming or gene expression programming. An-
other extension is available for integrating ECJ with DREAM project (Distributed
Resource Evolutionary Algorithm Machine). The system itself has a few interesting
features like GUI with charting possibilities, platform-independent checkpointing
and distributing the computations among multiple threads or multiple machines.

In the following sections we will briefly describe the most important parts of ECJ,
whose implementation influenced the way we designed our coevolutionary extension.
We will refer to the latest release of ECJ, which, at the time of writing these words,
has number 18.

4.1.1 Evolutionary Process within ECJ

A high-level evolutionary process is defined in ec.EvolutionState class which holds
a complete state of evolution at any time. Figure 4.1 depicts how the main evolu-
tionary loop proceeds and which ECJ classes are responsible for particular stages

40 4 cECJ Design

Initialize populations
ec.Initializer

Run Complete?

Evaluate individuals
and assign fitness
ec.Evaluator

Exchange Individuals
between populations
ec.Exchanger

Breed new populations
from previous ones

ec.Breeder

Clean up populations
ec.Finisher

Y

N

Increment
generation

number

Accumulate statistics,
perform logging tasks
ec.Statistics

Fig. 4.1: Evolutionary process in ECJ

of evolution. However, most of the classes presented in figure are abstract and only
define their functions but do not implement them. Basic implementations of these
methods providing simple, non-coevolutionary, generational evolution are contained
in ec.simple package.

4.1.2 ECJ Class Diagram

A simplified class diagram of the main classes in the ECJ system is presented in
Figure 4.2. Note that the colors on this diagram represent implemented interfaces as
it is explained in the legend. An important fact to observe is that besides instances of
the core Singleton classes, the EvolutionState contains also a single Population
object and a few utilities which are described in Section 4.1.4.

A population is initialized by the Initializer and it consists of one or more
Subpopulation objects which store evolving Individuals and an information about
Species to which they belong. An individual represents a solution to the given
problem while its species defines features of the individual – specifies how it breeds
(BreedingPipeline class) and what type of measure can be used to compare its
quality (Fitness class).

C
la

ss
 D

ia
g
ra

m
2

2
0
0
9
/0

6
/0

8

+
 p

o
p

u
la

te
()

P
o

p
u

la
ti

o
n

+
 p

o
p

u
la

te
()

+
 n

u
m

D
u
p

li
c
a
te

R
e
tr

ie
s
 :

 i
n
t

+
 l
o
a
d

In
d

s
 :

 F
il
e

S
u

b
p

o
p

u
la

ti
o

n

+
 n

e
w

In
d

iv
id

u
a
l(
)

S
p

e
c
ie

s

+
 p

ri
n
tI
n
d

iv
id

u
a
l(
)

+
 g

e
n
o
ty

p
e
T

o
S
tr

in
g
()

+
 e

v
a
lu

a
te

d
 :

 b
o
o
le

a
n

In
d

iv
id

u
a
l

+
 c

a
n
E
v
a
lu

a
te

()
+

 f
in

is
h
E
v
a
lu

a
ti
n
g
()

+
 p

re
p

a
re

T
o
E
v
a
lu

a
te

()

P
ro

b
le

m

+
 r

u
n
C

o
m

p
le

te
()

+
 e

va
lu

a
te

P
o
p

u
la

ti
o
n
()

E
v
a
lu

a
to

r

+
 f

in
is

h
()

+
 s

ta
rt

F
re

s
h
()

+
 e

v
o
lv

e
()

+
 r

u
n
()

+
 n

u
m

G
e
n
e
ra

ti
o
n
s
 :

 i
n
t

+
 g

e
n
e
ra

ti
o
n
 :

 i
n
t

+
 r

u
n
ti
m

e
A

rg
u
m

e
n
ts

 :
 S

tr
in

g
[]

+
 j

o
b

 :
 O

b
je

c
t[

]
+

 q
u
it
O

n
R

u
n
C

o
m

p
le

te
 :

 b
o
o
le

a
n

+
 c

h
e
c
k
p

o
in

tM
o
d

u
lo

 :
 i
n
t

+
 c

h
e
c
k
p

o
in

t
:

b
o
o
le

a
n

+
 e

v
a
lt
h
re

a
d

s
 :

 i
n
t

+
 b

re
e
d

th
re

a
d

s
 :

 i
n
t

E
v
o

lu
ti

o
n

S
ta

te

+
 s

e
tu

p
P
o
p

u
la

ti
o
n
()

+
 i
n
it
ia

lP
o
p

u
la

ti
o
n
()

In
it

ia
li

z
e
r

+
 f

in
is

h
P
o
p

u
la

ti
o
n
()

F
in

is
h

e
r

+
 p

o
st

B
re

e
d

in
g
E
x
ch

a
n
g
e
P
o
p

u
la

ti
o
n
()

+
 r

u
n
C

o
m

p
le

te
()

+
 p

re
B
re

e
d

in
g
E
x
ch

a
n
g
e
P
o
p

u
la

ti
o
n
()

E
x
c
h

a
n

g
e
r

+
 b

re
e
d

P
o
p

u
la

ti
o
n
()

B
re

e
d

e
r

+
 f

in
a
lS

ta
ti
s
ti
c
s
()

+
 p

o
s
tE

v
a
lu

a
ti
o
n
S
ta

ti
s
ti
c
s
()

+
 p

re
E
v
a
lu

a
ti
o
n
S
ta

ti
s
ti
c
s
()

S
ta

ti
s
ti

c
s

+
 b

e
tt

e
rT

h
a
n
()

+
 i
sI

d
e
a
lF

it
n
e
ss

()
+

 f
it
n
e
ss

()F
it

n
e
s
s

p
ro

to
ty

p
e

+
 m

a
x
C

h
il
d

P
ro

d
u
c
ti
o
n
()

+
 m

in
C

h
il
d

P
ro

d
u
c
ti
o
n
()

B
re

e
d

in
g

P
ip

e
li

n
e

+
 t

yp
ic

a
lIn

d
sP

ro
d

u
ce

d
()

+
 p

ro
d

u
ce

()
+

 f
in

is
h
P
ro

d
u
ci

n
g
()

+
 p

re
p

a
re

T
o
P
ro

d
u
ce

()
+

 p
ro

d
u
ce

s(
)

+
 p

ro
b

a
b

il
it
y
 :

 f
lo

a
t

B
re

e
d

in
g

S
o

u
rc

e

s
o
u
rc

e
s

e
c
.u

ti
l

P
a
ra

m
e
te

rD
a
ta

b
a
s
e

P
a
ra

m
e
te

r
M

e
rs

e
n

n
e
T

w
is

te
rF

a
s
t

O
u

tp
u

t

S
e
le

c
ti

o
n

M
e
th

o
d

S
in

g
le

to
n

G

ro
u

p

P
ro

to
ty

p
e

L
e
g
e
n
d

 :

Fig. 4.2: ECJ simplified class diagram – only the core classes and their most
important methods are shown; arguments and return types are not illustrated.

42 4 cECJ Design

Tournament Selection
ec.select.TournamentSelection

Old population of individuals

Random Selection
ec.select.RandomSelection

Vector Crossover Pipeline
ec.vector.breed.VectorCrossoverPipeline

New population of individuals

Vector Mutation Pipeline
ec.vector.breed.VectorMutationPipeline

produce()produce()

produce()

produce()

produce() produce()

Fig. 4.3: ECJ breeding tree mechanism – example of usage

4.1.3 Breeding Mechanism

The breeding mechanism is one of the most important parts of the ECJ system,
that is responsible for making the actual evolutionary change by creating a new
population on the basis of the previous one. In evolutionary algorithms breeding is
realized by selecting the most promising individuals and exposing them to genetic
operations characteristic to a certain species. To achieve this goal in ECJ, a proper
SelectionMethod should be used as a BreedingSource producing individuals for
another BreedingPipeline realizing particular genetic operations.

It is worth pointing out that ECJ’s breeding classes implement the Composite de-
sign pattern [Gamma 95], whose intent is to arrange objects into tree-like structures.
In this case the leaves of the tree are SelectionMethods responsible for picking in-
dividuals from the old population while the branch nodes are BreedingPipelines
operating on individuals gathered from its subtrees and passing it further to their
parent nodes. The Species object of each subpopulation knows only the root of this
breeding tree but it is sufficient to propagate individuals through the whole struc-
ture by recursively invoking produce method on children nodes. A sample breeding
pipeline tree is presented in Figure 4.3. After picking two individuals from the old
population using different selection methods, they are crossed over, mutated and
finally placed in the new population. Note that this is only an example of using
breeding mechanism and in practice the pipeline tree may take a variety of forms.

4.2 cECJ Extensions 43

4.1.4 ECJ Utilities

Among the utilities contained in ec.util package the major one is undoubtedly
the ParameterDatabase class. This class is responsible for reading and managing
runtime parameters from parameter files provided by users as a command line ar-
gument to the application. Besides simple parameters of primitive types such as a
number of generations, parameter file can provide names of concrete classes to be
instantiated at runtime, during the course of evolution. This can be achieved thanks
to reflection feature of Java language. A format of parameter file is very similar to
Java properties style. Sample parameter files can be found in the appendix B.

The ec.util package contains also a high-quality pseudorandom number gen-
erator (an implementation of the Mersenne Twister) and output logging facilities,
which are all held by the singleton EvolutionState object. Since it is passed as an
argument to the majority of class methods of the whole system, generating pseudo-
randoms and message logging can be performed almost everywhere. Finally, there
is also a checkpointing utility which allows for writing current evolution state to a
file and restoring it later. This feature can be used in order to increase the fault-
tolerance of time-consuming computation tasks.

4.2 cECJ Extensions

As it was mentioned in Chapter 2, coevolutionary algorithms differ from standard
evolutionary ones in at least a few aspects. The most important difference con-
cerns the way in which population members are evaluated. The other dissimilarities
are connected with using archives as a remedy to some coevolutionary pathologies.
Archives can influence the way the evaluation and breeding are performed. More-
over, the main role of archives is to represent gathered knowledge and approximate
desired solution concept. All these differences form a starting point for the core
functionality of cECJ extension.

4.2.1 Extended Evaluation

Evolutionary algorithms use a problem-dependent evaluation function which is ca-
pable of “objectively” measuring the quality of candidate solutions of given problem.
In coevolution, on the other hand, individuals representing solutions interact with
each other and according to results of these interactions the final fitness is calcu-
lated. The scope of such interactions can be inter- or intra-specific and inter- or
intra-population, i.e., interaction partners can be chosen from the same or other
population. In the latter case the species of the other population can be different
from the species of evaluated individual.

Figure 4.4 presents the way coevolutionary evaluation extends the evaluation
stage from the conventional evolutionary loop (cf. workflow diagram in Figure 4.1).

44 4 cECJ Design

Choose interacting individuals from each
 population and optionally also from archive
cecj.sampling.SamplingMethod

For each population perform interactions
between its individuals and individuals
selected from competing populations

cecj.interaction.InteractionScheme

Aggregate interaction results into a fitness measure
cecj.fitness.FitnessAggregateMethod

Optionally update archive state for each population
with respect to newly bred individuals

cecj.archive.CoevolutionaryArchive

Evaluate individuals and assign fitness
cecj.eval.CoevolutionaryEvaluator

Fig. 4.4: Evaluation in cECJ

Notice also base classes responsible for particular steps. Different ways of realizing
abstract methods from the workflow diagram are defined by concrete subclasses
presented in Chapter 5.

4.2.2 Archive Mechanisms

Apart from expanding the evolutionary loop by a much more complex evaluation
stage, the second major extension of the basic ECJ functionality is incorporating
archives into evolutionary process. Archive mechanisms play three important roles:

• provide genetic material for future generations – an archival individual can be
selected as a parent of a new generation’s offspring,
• improve accuracy of the fitness evaluation of individuals in the population –

their interaction partners can be sampled from the archive,
• approximate desired solution concept – while population performs exploration

of the solution space, archive is aimed at storing the most promising individuals
with respect to the implemented solution concept.

Since archive mechanism is an intrinsic part of the majority of modern coevolution-
ary algorithms, they have significantly influenced the design of cECJ library.

4.2 cECJ Extensions 45

4.2.3 cECJ Class Diagram

A simplified class diagram of the most essential classes in cECJ extension is de-
picted in Figure 4.5. Once again the legend in the left bottom corner explains the
meaning of the white-colored with respect to ECJ’s interfaces introduced in the pre-
vious section. The left part of this diagram presents hierarchy of evaluators extend-
ing ec.Evaluator abstract class. Except TournamentCoevolutionaryEvaluator
which is a dedicated solution for a special type of intra-population interaction
scheme, simple and archiving evaluators make extensive use of helper classes shown
on the right side. These classes are white-colored since they do not implement any
of the original ECJ’s core interfaces.

The helper classes were already mentioned in Figure 4.4 because they are respon-
sible for particular steps of evaluation in coevolutionary algorithms. Extracting each
of these simple functions as a separate interface allows for a lot of flexibility during
configuration of experimental setup. Different implementations of particular steps
can be mixed together in a number of ways without any limitations.

Additionally, a few of the original ECJ’s classes were subclassed specially for co-
evolutionary purposes. ArchivingSubpopulation (extending ec.Subpopulation)
is used by archives and corresponding evaluators to store archival individuals. Keep-
ing all individuals (from population and archive) in one place allows for mixing in-
dividuals from both sources by the breeding mechanism. Obviously, this can result
in producing more promising offspring. Another class is TestBasedProblem (a sub-
class of ec.Problem) which plays a role of a marker interface for problems applicable
to coevolution. Furthermore, this class adds a dedicated method for computing an
interaction result between two individuals among which one is considered as a can-
didate solution while another one as a test. More detailed description of particular
classes and their exact implementations can be found in Chapter 5.

c
E

C
J

2
0

0
9

/0
6

/0
8

+
 g

e
tP

ro
b

le
m

()
 :

 T
e
s
tB

a
s
e
d

P
ro

b
le

m

#
 n

u
m

S
u
b

p
o
p

u
la

ti
o
n
s
 :

 i
n
t

C
o

e
v
o

lu
ti

o
n

a
ry

E
v
a
lu

a
to

r

-
 p

o
p

In
d

s
W

e
ig

h
t

:
fl
o
a
t

-
 s

e
tu

p
S
u
b

p
o
p

u
la

ti
o
n
()

 :
 v

o
id

-
 f

in
d

O
p

p
o
n
e
n
ts

F
ro

m
S
u
b

p
o
p

u
la

ti
o
n
()

 :
 L

is
t<

In
d

iv
id

u
a
l>

+
 g

e
tI
n
te

ra
c
ti
o
n
S
c
h
e
m

e
()

 :
 I
n
te

ra
c
ti
o
n
S
c
h
e
m

e

S
im

p
le

C
o

e
v
o

lu
ti

o
n

a
ry

E
v
a
lu

a
to

r

+
 p

ri
n
tI
n
d

iv
id

u
a
l(
s
ta

te
 :

 E
v
o
lu

ti
o
n
S
ta

te
,

lo
g
 :

 i
n
t,

 v
e
rb

o
s
it
y
 :

 i
n
t)

 :
 v

o
id

+
 g

e
n
o
ty

p
e
T

o
S
tr

in
g
()

 :
 v

o
id

+
 e

v
a
lu

a
te

d
 :

 b
o
o
le

a
n

In
d

iv
id

u
a
l

+
 s

a
m

p
le

(s
o
u
rc

e
 :

 I
n
d

iv
id

u
a
l[
])

 :
 L

is
t<

In
d

iv
id

u
a
l>

S
a
m

p
li

n
g

M
e
th

o
d

+
 p

e
rf

o
rm

In
te

ra
ct

io
n
s(

o
p

p
o
n
e
n
ts

 :
 L

is
t<

Li
st

<
In

d
iv

id
u
a
l>

>
)

:
Li

st
<

Li
st

<
In

d
iv

id
u
a
l>

>

In
te

ra
c
ti

o
n

S
c
h

e
m

e

+
 s

e
tu

p
A

rc
h
iv

in
g
S
u
b

p
o
p

u
la

ti
o
n
()

 :
 v

o
id

-
 f

in
d

O
p

p
o
n
e
n
ts

F
ro

m
A

rc
h
iv

e
()

 :
 L

is
t<

In
d

iv
id

u
a
l>

A
rc

h
iv

in
g

C
o

e
v
o

lu
ti

o
n

a
ry

E
v
a
lu

a
to

r

+
 s

o
lv

e
s
(c

a
n
d

id
a
te

 :
 I
n
d

iv
id

u
a
l,
 t

e
s
t

:
In

d
iv

id
u
a
l)
 :

 b
o
o
le

a
n

+
 t

e
st

(c
a
n
d

id
a
te

 :
 I
n
d

iv
id

u
a
l,
 t

e
st

 :
 I
n
d

iv
id

u
a
l)
 :

 I
n
te

ra
ct

io
n
R

e
su

lt

T
e
s
tB

a
s
e
d

P
ro

b
le

m

+
 r

u
n
C

o
m

p
le

te
(s

ta
te

 :
 E

vo
lu

ti
o
n
St

a
te

)
:

b
o
o
le

a
n

+
 e

va
lu

a
te

P
o
p

u
la

ti
o
n
(s

ta
te

 :
 E

vo
lu

ti
o
n
St

a
te

)
:

vo
id

E
v
a
lu

a
to

r

+
 a

ss
ig

n
Fi

tn
e
ss

()
 :

 v
o
id

+
 p

re
p

a
re

T
o
A

g
g
re

g
a
te

()
 :

 v
o
id

+
 a

d
d

T
o
A

g
g
re

g
a
te

(r
e
su

lt
s

:
Li

st
<

Li
st

<
In

te
ra

ct
io

n
R

e
su

lt
>

>
)

:
vo

id

F
it

n
e
s
s
A

g
g

re
g

a
te

M
e
th

o
d

+
 c

a
n
E
v
a
lu

a
te

()
 :

 b
o
o
le

a
n

+
 f

in
is

h
E
v
a
lu

a
ti
n
g
(s

ta
te

 :
 E

v
o
lu

ti
o
n
S
ta

te
,

th
re

a
d

n
u
m

 :
 i
n
t)

 :
 v

o
id

+
 p

re
p

a
re

T
o
E
v
a
lu

a
te

(s
ta

te
 :

 E
v
o
lu

ti
o
n
S
ta

te
,

th
re

a
d

n
u
m

 :
 i
n
t)

 :
 v

o
id

P
ro

b
le

m

+
 g

e
tA

rc
h
iv

e
()

 :
 L

is
t<

In
d

iv
id

u
a
l>

+
 s

u
b

m
it
()

 :
 v

o
id

C
o

e
v
o

lu
ti

o
n

a
ry

A
rc

h
iv

e

-
 s

h
u
ff

le
C

o
m

p
e
ti
to

rs
()

 :
 v

o
id

-
 p

re
p

a
re

T
o
u
rn

a
m

e
n
t(

)
:

v
o
id

-
 p

la
y
T

o
u
rn

a
m

e
n
tR

o
u
n
d

()
 :

 v
o
id

-
 m

a
k
e
T

o
u
rn

a
m

e
n
t(

)
:

v
o
id

-
 f

in
d

A
c
ti
v
e
C

o
m

p
e
ti
to

rs
()

 :
 v

o
id

-
 a

s
s
ig

n
F
it
n
e
s
s
()

 :
 v

o
id

-
 t

o
u
rn

a
m

e
n
tR

e
p

e
a
ts

 :
 i
n
t

-
 p

o
in

ts
 :

 i
n
t[

]
-
 n

u
m

C
o
m

p
e
ti
to

rs
 :

 i
n
t

-
 c

o
m

p
e
ti
to

rs
 :

 I
n
d

iv
id

u
a
l[
]

-
 c

o
m

p
e
ti
ti
o
n
 :

 i
n
t[

]
-
 a

c
ti
v
e
C

o
m

p
e
ti
to

rs
 :

 i
n
t[

]
-
 a

c
ti
v
e
 :

 b
o
o
le

a
n
[]

T
o

u
rn

a
m

e
n

tC
o

e
v
o

lu
ti

o
n

a
ry

E
v
a
lu

a
to

r

+
 g

e
tA

rc
h
iv

e
()

 :
 L

is
t<

In
d

iv
id

u
a
l>

A
rc

h
iv

in
g

S
u

b
p

o
p

u
la

ti
o

n
S
in

g
le

to
n

G

ro
u

p

P
ro

to
ty

p
e

L
e
g
e
n
d

 :

Fig. 4.5: cECJ simplified class diagram – only the most important classes and
interfaces are illustrated; not all methods are precisely modeled.

Chapter 5

cECJ Implementation

This chapter reviews in detail the whole implemented cECJ library. Particular
sections correspond to cECJ packages and specify how different stages of the co-
evolutionary run are realized. Every implemented class which defines one method
of taking certain step of the coevolutionary process is shortly presented. Therefore,
this chapter can be viewed as a documentation useful for preparing parameter files
and defining custom experiments.

Recall that one of the main features of the original ECJ system is flexibility
in defining an experimental setup without necessity of source code modifications.
This was achieved by employing the concept of parameter files that is reused and
extended by the cECJ library in the following way. Every step taken in the coevo-
lutionary process can be performed in a number of ways, but to avoid implementing
each of possible combination as a separate class, delegation mechanism was utilized
as figure 4.5 illustrates. For example, SimpleCoevolutionaryEvaluator delegates
evaluation subtasks like sampling or fitness assignment to dedicated interfaces. The
parameter file’s role is to specify their concrete realizations.

5.1 Evaluators

The most significant change in the evolutionary process, comparing to ECJ, concerns
ec.Evaluator implementation; indeed, this is the only one of the core ec.Singleton
classes maintained by ec.EvolutionState that must be changed in coevolutionary
setup. Consequently, the cecj.eval package containing evaluators implementation
is the main cECJ package – the hierarchy of created classes is illustrated in Figure
5.1. The abstract CoevolutionaryEvaluator class just verifies if a given problem
is applicable to coevolution and overrides the runComplete method; this method
always returns false because coevolutionary algorithms are not able to determine
if an ideal solution has been found. Before we explore particular subclasses, note that
the enhanced evaluation procedure shown in Figure 4.4 is realized in its entirety only
by ArchivingCoevolutionaryEvaluator while the other ones fulfill it partially.

48 5 cECJ Implementation

ec.Evaluator

CoevolutionaryEvaluator

TournamentCoevolutionaryEvaluator SimpleCoevolutionaryEvaluator

ArchivingCoevolutionaryEvaluator

TDLImprovingEvaluator

Fig. 5.1: Evaluators hierarchy

• TournamentCoevolutionaryEvaluator is an evaluator dedicated to so-called
Single Elimination Tournament (SET) described in greater detail in Chap-
ter 2.2.2.1. This class is completely different from the other evaluator types
because of two reasons. First, it is compatible only with single population
coevolution. Second, the interactions between individuals must be performed
in a certain order because it depends on the outcome of previous interaction if
the individual can compete further. Since it would be hard to extend this eval-
uator with generic archiving or fitness sharing, only the simplest settings are
available. To reduce the inherent noise of the tournament evaluation scheme,
a few rounds can be played. The number of rounds is specified by a repeats
parameter which is equal to 1 by default.
• SimpleCoevolutionaryEvaluator is the simplest implementation of conven-

tional coevolutionary evaluation where interactions between individuals can
be performed in an arbitrary order. However, the character and the scope
of interactions can be different – it is defined by instantiating appropriate
InteractionScheme subclass (see Section 5.3.2). The evaluation proceeds
as follows. First of all, a reference set of opponent individuals is selected
from each subpopulation. This task is handled by a SamplingMethod realiza-
tion. Distinct sampling methods can be used by different subpopulations –
available types are precisely described in Section 5.3.1. Next, each subpop-
ulation individuals are confronted with previously selected opponents from
subpopulations pointed by the concrete InteractionScheme class. Finally,
FitnessAggregateMethod is responsible for aggregating outcomes of these
confrontations into a single fitness measure which is used later during selec-
tion stage of the evolutionary process.

5.2 Archives 49

• ArchivingCoevolutionaryEvaluator extends the simple evaluation process
with an archiving mechanism. The role of archives is presented in Section 4.2.2,
whereas their implementation details are discussed in Section 5.2. In this
class, the evaluation procedure is realized in the following manner. Firstly,
after taking simple evaluation steps mentioned above, additional opponents
are selected among archival individuals (an archive is maintained for each
subpopulation). Outcomes of the interactions with such opponents are added
to results obtained by the superclass and aggregated together. Eventually,
subpopulation individuals are submitted to the archive which decides if any
of them is worth keeping. While interaction scheme and fitness aggregation
method are inherited from the SimpleCoevolutionaryEvaluator, archival
sampling methods must be defined separately for each of the archives. Often,
opponents sampled from the population are less competent than these from
the archive; to address this issue, an additional parameter was created that
specifies the importance of opponents from the particular source.
• TDLImprovingEvaluator implements the Decorator pattern [Gamma 95] and

thus acts as a wrapper for any other CoevolutionaryEvaluator. The only role
of this class is improving each individual of the population by running a spe-
cific temporal difference learning (TDL) algorithm before the evaluation. Since
the exact implementation of this algorithm depends on the problem, evaluator
delegates the learning task to the provided TDLImprover interface realization.
At the beginning of evolutionary process individuals may require some prepa-
ration for running TDL. For this reason, appropriate interface methods are
invoked before the first evaluation. Clearly, not every problem can be ap-
proached by reinforcement learning paradigm so this class has also a limited
scope of applicability. Note, however, that this evaluator realizes the Coevo-
lutionary Reinforcement Learning idea introduced in Chapter 3.

5.2 Archives

Archives form a remarkable part of every modern coevolutionary algorithm. Theo-
retical issues concerning archives and their roles are discussed in Sections 2.2.2.2 and
5.2. In this section we focus on the implementation details. Figure 5.2 illustrates the
hierarchy of created archive classes contained in the cecj.archive package. Once
again there is an abstract class at the top of the hierarchy (CoevolutionaryArchive)
that checks the compatibility with the rest of the configuration. Nevertheless, the
main functionality is left to be defined in the submit method within subclasses.
This method is called by ArchivingCoevolutionaryEvaluator after evaluating the
population and its role is to add promising individuals from the population to the
archive.

50 5 cECJ Implementation

CoevolutionaryArchive

BestOfGenerationArchive CandidateTestArchive

MaxSolveArchive ParetoCoevolutionArchive

IPCArchiveLAPCArchive

Fig. 5.2: Archives hierarchy

• BestOfGenerationArchive (BoG) is the simplest archive type which just finds
the best individual from the submitted population and appends it to the list of
individuals found in previous generations. Note that, by default, the archive
size is unbounded and grows steadily over time because no archival individuals
are removed. By setting the archive-size parameter value to x, only the best
competitors from last x generations are maintained.
• CandidateTestArchive is an abstract class representing an archive dedicated

for learner-teacher paradigm. Thus, it checks if appropriate interaction scheme
(i.e., LearnerTeacherInteractionScheme) is used and finds out the role of
each subpopulation. Submitting a population to this archive results in extract-
ing candidate and test individuals and passing them to subclass methods.
• MaxSolveArchive is a straightforward implementation of the algorithm pro-

posed by de Jong [de Jong 05]. During the first step of the submit method,
new candidates and tests are added to corresponding archives; then duplicate
candidate solutions are eliminated (two individuals are considered equal if for
each test in the archive they have identical outcomes). After sorting candi-
dates by number of solved tests, the best archive-size individuals are kept
in the archive. The last step is elimination of unsolved and duplicated (with
respect to the outcomes against archival candidates) tests. Since duplicates
removal is a common task, a purpose-built EquivalenceComparator interface
is used for defining custom equivalence criteria.

5.2 Archives 51

• ParetoCoevolutionArchive is another abstract class that is useful in Pareto-
Coevolution paradigm where each test is viewed as an objective in the sense
of Multi-Objective Optimization. The class provides methods for comparing
individuals on the basis of their interactions outcomes considered in the context
of Pareto dominance relation (methods dominates, isDominated). According
to the results of these comparisons a test can be found useful if it proves that
a particular candidate solution is not dominated by any other individual in
the archive. Such usefulness can be verified using the methods of this class
(isUseful, findUsefulTest).
• IPCArchive (Incremental Pareto-Coevolution Archive) is an implementation

of the archiving algorithm introduced by de Jong [de Jong 04b]. For each of
the submitted candidates it is checked if any useful test exists in the archive or
currently submitted population, that proves the candidate is non-dominated.
If such test is found, the considered individual is added to the archive while all
individuals that it dominates are removed. The implementation relies heavily
on the methods provided by the superclass – PareroCoevolutionArchive.
• LAPCArchive (Layered Pareto-Coevolution Archive) is a modified version of

the IPCA archive described above (see also [de Jong 04a] and [de Jong 07]).
While the original one can grow indefinitely (tests are never removed from the
archive), this type of archive limits the maximum number of stored individuals.
However, this goal is achieved for the price of reducing the reliability of the al-
gorithm. After appending non-dominated candidate solutions and useful tests
to appropriate archives, maintainLayers and updateTestArchive methods
are invoked in order to decrease the amount of used memory. The first one
checks which candidate solutions belong to the first num-layers Pareto layers
and keeps them in the archive. The second retains only these tests which make
distinctions between neighboring layers.

5.2.1 Archiving Subpopulation

The above archive description raises the question of where archival individuals should
be stored. There are a few possible places including the CoevolutionaryArchive
subclasses. For breeding purposes, however, the best place is near all the rest of
individuals – in the population. Thus, a dedicated ArchivingSubpopulation class
was created with an additional list of individuals forming an archive. This class
overrides emptyClone method called by ec.Breeder to create a storage for future
generation. In contrast to the array of population individuals which is allocated
but not filled until breeding starts, the list of archival individuals is entirely copied
from the last generation. Note that CoevolutionaryArchive instances gain access
to this list by calling the getArchivalIndividuals getter method.

52 5 cECJ Implementation

InteractionScheme

IntraPopulationInteractionScheme InterPopulationInteractionScheme LearnerTeacherInteractionScheme

InteractionResult

SamplingMethod

AllSamplingMethod RandomSamplingMethod NullSamplingMethod

FitnessAggregateMethod

SimpleSumFitness CompetitiveFitnessSharing
CoevolutionaryEvaluator

SimpleCoevolutionaryEvaluator

Fig. 5.3: Interaction schemes hierarchy

5.2.2 Archive as a Breeding Source

One of the main roles of an archive is to provide genetic material for future gener-
ations. This concept is realized by ArchiveRandomSelection class which extends
ec.SelectionMethod and allows for using archive as a breeding source. Individuals
produced by this class are selected randomly from the ArchivingSubpopulation.
In addition, parameter size can be used to limit the scope of selection to last size
individuals recently appended to the archive.

5.3 Evaluating Infrastructure

Since the evaluation stage in coevolutionary algorithms is relatively sophisticated,
a few helper interfaces were extracted. These interfaces address particular subprob-
lems of the evaluation process as it is illustrated in Figure 4.4. In the following
subsections particular interfaces and their example realizations will be described in
the order in which they are employed by evaluator classes. All these entities are
depicted in Figure 5.3. Note that the overall evaluation process is largely influenced
by choosing convenient implementations among these classes.

5.3 Evaluating Infrastructure 53

5.3.1 Sampling Methods

Before interactions can be performed, each subpopulation must be sampled in order
to choose a reference set of individuals representing this group. This task is delegated
to the SamplingMethod interface and its sample method. The only role of this
method is to select a subset of individuals from the source set provided in the form
of an array or java.util.List. Clearly, the number of selected individuals has
a great impact on the amount of time spent on evaluating the whole population.
Only a few easy sampling methods were implemented, but it would be interesting
to add Shared Sampling presented in [Rosin 95], for instance. Classes representing
particular methods form cecj.sampling package.

• AllSamplingMethod is a trivial implementation which just returns the un-
changed source as a list of sampled individuals. This type of sampling results
in the largest number of interactions and thus it is the most time-consuming.
• RandomSamplingMethod selects randomly a combination of individuals (with

repetitions allowed). The class can be customized by setting sample-size
parameter to control the number of sampled individuals. By default, it is
equal to 1. This method is known in the literature as k-random opponents.
• NullSamplingMethod was implemented instead of adding another parameter

or specialization of evaluator class which does not take into account interac-
tions with particular sources of individuals (i.e., subpopulations or archives).
This method can be viewed as a variation of the Special Case design pattern.

5.3.2 Interaction Schemes and Interaction Results

The second delegate interface utilized by CoevolutionaryEvaluator subclasses to
evaluate a population is InteractionScheme. Classes implementing this interface
specify between which subpopulations interactions take place and how to obtain
their outcomes. Particularly, they should know what method of the given problem
definition is capable of deciding about a result of particular interactions. The only
interface method (performInteractions) returns the list of InteractionResult
objects. Examples of classes representing such results are WinDrawLossResult and
RealValuedResult. The exact character of an outcome is problem-dependent and
the interaction scheme may abstract from it. All the interactions-related classes
belong to cecj.interaction package.

• IntraPopulationInteractionScheme defines a basic interaction scheme. Each
individual in the particular subpopulation competes with a sampled reference
set of opponents from the same subpopulation. Since the payoff matrix of
the problem can be asymmetric, the competition between two individuals is
repeated twice – each individual plays both roles. This class requires that
problem implements SymmetricCompetitionProblem interface.

54 5 cECJ Implementation

• InterPopulationInteractionScheme is a scheme where all possible combina-
tions of two subpopulations are considered. Certainly, there is (n2) such subsets,
where n is a number of subpopulations. However, every combination implies two
possibilities of interactions because competing populations may have distinct roles.
For this reason, for each subpopulation pop1 we examine every other subpopulation
pop2. Each such pair in the form < pop1, pop2 > implies that all individuals from
pop1 are confronted with a reference set of competitors sampled from pop2.

• LearnerTeacherInteractionScheme is a specific kind of interactions between dif-
ferent subpopulations intrinsic to the learner-teacher paradigm. In contrast to
InterPopulationInteractionScheme described above, not every pair of subpop-
ulations can interact. In order to distinguish pairs that should be confronted, the
role parameter was introduced – populations marked with LEARNER role interact
with TEACHER populations.

5.3.3 Fitness Aggregation Methods

The last step of the evaluation procedure is an aggregation of gathered interaction re-
sults into a single fitness measure associated with the ec.Individual object. This is-
sue is addressed by the FitnessAggregateMethod interface, whose addToAggregate
method allows for aggregating outcomes coming from many sources. Note that one
of the arguments of this method is weight which specifies how important certain re-
sults are. For example, ArchivingEvaluator combines results of interactions with
population and archival individuals. Furthermore, it uses pop-inds-weight and
archive-inds-weight parameters to determine an impact of interactions with in-
dividuals from particular source (population and archive, respectively) on the final
fitness value.

Only two fitness aggregation methods were implemented – they are contained
in cecj.fitness package. Both of them assume that individuals are configured to
use ec.simple.SimpleFitness that is consisting of a single floating-point value.
Pareto dominance rank is potentially another method that could be added – it is
quite common in Evolutionary Multi-Objective Optimization.

• SimpleSumFitness just adds numeric values of all the interactions results
associated with a certain individual and treats the sum as a fitness value.
• CompetitiveFitnessSharing is an implementation of popular method pro-

posed by Rosin and Belew [Rosin 97]. Each opponent individual is treated
as a unit resource that can be shared among individuals which are able to
overcome it. The accurate amount of this resource awarded to particular indi-
viduals depends on the outcome of their interaction with defeated opponent.

5.4 Test-based Problems 55

5.4 Test-based Problems

Obviously, not every single problem is applicable to coevolutionary approach. For
this reason, there must be a way to check if the given problem is a proper one.
CoevolutionaryProblem is a marker interface that has to be implemented by a
concrete ec.Problem subclass in order to indicate that it is prepared to be used
with coevolutionary evaluators. The role of a problem definition in this context is
to describe how interaction proceed, what kind of individuals interact with each
other and what type of interaction result is returned.

The most popular arrangement in coevolutionary algorithms is known as the
learner-teacher or test-based paradigm (see Chapter 2). Typically, this results in
two coevolving populations with different roles and search spaces. For purposes of
this paradigm, the abstract TestBasedProblem class was created.

5.4.1 Caching Evaluation Results

Often, during a single coevolutionary run, millions of interactions are performed. If
the number of possible individuals genotypes is limited (i.e., search space is finite)
then it may happen that identical individuals meet many times within different
generations. Thus, it would be useful to cache the interaction results between such
individuals and in case they meet again, just find the result of their previous inter-
action. TestBasedProblemCachingDecorator plays a role of such cache manager.
The class wraps the original TestBasedProblem instance and asks it for a particu-
lar interaction outcome if it is encountered for the first time. Using of such utility
can result in a significant efficiency improvement. Note, however, that it cannot be
used if an interaction result is not deterministic. For instance, backgammon game is
based on a roll dicing, so caching game result between certain players is impossible.

Regarding implementation details, it is worth pointing out that internally the
caching decorator class employs java.util.HashMap. Additionally, to deal with
unlimited memory requirements of the cache manager, simple LRU (least recently
used) algorithm was implemented. The algorithm is fired up when the size of cached
interaction results exceeds the value specified by the cache-size parameter. After
sorting map entries with respect to times of last access, the older half is removed.

5.4.2 Sample Problems – Numbers Game and Othello

Two sample test-based problems were implemented for experimental purposes. The
first one is a well-known Numbers Game which was introduced byWatson [Watson 01]
and extended later by de Jong [de Jong 04c] who creates Compare-On-One and
Compare-On-All versions of the game. The second problem is the board game of
Othello (see Chapter 3). The source code of both problems definitions can be found
in corresponding subpackages of cecj.app package.

56 5 cECJ Implementation

5.5 Objective Fitness

In standard evolutionary algorithms the fitness of individuals is computed by an
objective fitness function which does not change during evolutionary process. This
function can provide some measure of individual’s performance in the context of
the given task. For example, considering Traveling Salesman Problem, the fitness
function could be naturally defined as a length of the Hamiltonian cycle in the
weighted complete graph (the order of vertices forming a cycle is controlled by an
individual’s genotype). In coevolution, there is still a fitness function – returning
a result of aggregating outcomes of interactions between individuals – but it is
no longer objective. Certainly, the fitness value assigned to an individual by a
coevolutionary algorithm depends on randomly chosen opponents from competing
species. The same individual can obtain diametrically different evaluations because
of the randomness of the evaluation procedure. Even if we decide to choose all
the population individuals as opponents, the fitness is still subject to the state of
coevolving populations.

5.5.1 Objective Fitness Calculator

Since we seek to optimize the objective fitness which allows us to compare solutions
obtained by different algorithms, we have to define some objective measure of the
individual’s quality. For test-based problems, however, there is often no natural way
to accurately evaluate candidate solutions. One of the most intuitive methods of
approximating performance of an individual is to simulate interactions with random
or expert player. Obviously, the exact algorithm computing an objective fitness is
dependent upon the problem at hand. ObjectiveFitnessCalculator is an interface
that has to be implemented by such algorithm to enable it to be used with statistics
classes presented below.

5.5.2 Objective Fitness Statistics

Statistics information in standard ECJ’s distribution is gathered by ec.Statistics
subclasses. They are prepared to log the traditional fitness which is associated with
each individual and guides the selection stage. Nevertheless, in coevolutionary algo-
rithms this fitness is subjective and it usually does not provide precise information
about real individual’s quality. Thus, it cannot be used to compare individuals
evolved in different environments nor even to monitor a progress of the popula-
tion performance. To address these issues ObjectiveFitnessStatistics class was
defined. Every frequency generations, it calculates the objective fitness of each in-
dividual in the population using provided ObjectiveFitnessCalculator instance
specified by fitness-calc parameter. On the basis of calculated fitnesses, statisti-
cal measures like average and standard deviation are computed and written together
in the fitness-file log.

5.6 Board Games Interfaces 57

GameScenario

SimpleTwoPlayersGameScenario RandomizedTwoPlayersGameScenario SelfPlayTDLScenario

BoardGame Board

Player

GameMove

Fig. 5.4: Games interfaces interaction diagram

Additionally, ObjectiveFitnessChartingStatistics was implemented that in-
tegrates with ECJ’s GUI utilities. This class allows for plotting the chart of an
average objective fitness of the population.

5.6 Board Games Interfaces

Because board games are one of the main applications of coevolutionary algorithms,
a set of interfaces was defined to ease the future development of such games. These
interfaces and other game-related classes are contained in games package. Figure 5.4
illustrates interactions inside this package. The upper part of the picture is occupied
by Player, BoardGame, Board and GameMove interfaces whose role is to describe the
game rules including the following aspects:

• verifying if the game is finished,
• determining what legal moves are available in a certain game state,
• specifying how the board state changes after a particular move is made,
• evaluating particular moves according to the player’s knowledge,
• getting the final outcome of the game.

Moreover, the GameScenario interface was introduced to represent different ways
of playing a game. Apart from deterministic SimpleTwoPlayersGameScenario,
RandomizedTwoPlayersGameScenario is defined where each player can be forced
to make a random move. The proportion of random moves is controlled by the
probabilities given as arguments to scenario constructor. The last type of scenario
depicted in the figure is SelfPlayTDLScenario which concerns single player’s self-
play. During the game, the player’s evaluation function is updated according to
temporal difference (TD(0)) algorithm. In this scenario forcing random moves is a
typical method to explore the game tree.

58 5 cECJ Implementation

The game we devote the large part of our experiments (see Chapter 6) is Oth-
ello that is described precisely in Chapter 3. The implementation of this game is
contained in cecj.app.othello package, but it uses interfaces from games package.

Chapter 6

Experiments and Results

In this chapter we present several computational experiments and their result. These
experiments were performed to verify our hybrid approach to the problem of learning
Othello strategy and compare it to preexisting methods. We begin by describing a
detailed setup of all tested algorithms and the way the players are evaluated (see
Section 6.1). Next, in Section 6.2 we present a set of experimental results including
direct comparison of all methods and round-robin tournament between the best
players of every run. Additionally, we investigate the issue of appropriate intensity of
individually performed temporal difference learning. Finally, we present some minor
findings concerning influence of the initialization on the speed of learning. All the
following experiments were implemented using our co-Evolutionary Computation in
Java (cECJ) library described in detail in Chapters 4 and 5. Some of the parameter
files used in these experiments can be found in Appendix B.

6.1 Experimental Setup

We conducted several experiments to test different algorithms of learning Othello
strategy, that were introduced in Chapter 3 – Temporal Difference Learning (TDL),
Coevolutionary Learning (CEL), and a hybrid Coevolutionary Temporal Difference
Learning (TDL + CEL = CTDL) based on two previous methods. Additionally,
CEL and CTDL setups were also tested with a simple Hall of Fame (HoF) archive
that maintain the set of best-of-generation individuals [Rosin 97].

To avoid precise tuning of parameters for this specific problem, we used the
most typical and intuitive configuration of given algorithms. However, at the same
time some settings were based on previous research [Lucas 06] which we want to
consult regarding our findings. In order to compare different methods fairly, for all
experiments we set the number of generations (CEL) or steps (TDL) so that the
total number of played games did not exceed 4.5 million. For statistical significance,
each experiment was repeated 30 times with different pseudorandom generator seed
values. In the next section we give detailed information about settings of each
method involved in comparison.

60 6 Experiments and Results

6.1.1 Methods

6.1.1.1 TDL — Temporal Difference Learning

TDL is a straightforward implementation of gradient-descent temporal difference
algorithm – TD(0) described in Section 3.2.2. This setup represents an autonomous
reinforcement learning approach. All WPC weights are initially set to 0 and the
learner is trained solely through self-play. Random moves are forced with probability
0.1 and the value of learning rate α = 0.01. An important issue is that directly after
making a random move learning does not occur and, consequently, the WPC is not
updated.

6.1.1.2 CEL — Coevolutionary Learning

CEL uses a generational coevolutionary algorithm with a population of 50 individ-
uals. Each individual is represented by an array of 64 doubles which is used as
a WPC vector. Initially, all weights are set to 0 whereas during mutation they
are limited to the range [−1, 1]. In evaluation phase, a round-robin tournament is
played between all individuals. Like in many sports leagues, three points for a win
awarding standard is used (win – 3 points, draw – 1, loss – 0). The sum of the
scores achieved in this tournament serves as a final fitness value. The evaluated
individuals are selected using standard tournament selection (tournament size 5),
and then, with probability 0.03, each of their weights undergo Gaussian mutation
(σ = 0.25). Next, they mate using one-point crossover, and the resulting offspring
is the only source for the subsequent generation (there is no elitism). As each gen-
eration requires 50× 50 games, the run lasts for 1800 in order to attain 4.5 millions
of training games.

Parameter file for this setup is presented in Appendix B.1.

6.1.1.3 CEL + HoF — Coevolutionary Learning with Hall of Fame

This setup extends the previous one with the Hall of Fame archive consisting of
best-of-generation individuals encountered during the course of evolution. In evalu-
ation phase, each individual plays games with all 50 individuals from the population
(including itself) and, additionally, with 50 randomly selected archival individuals.
According to the outcomes of these games, the best individual is selected and copied
into the archive. The archive serves also as a source of genetic material for breeding
purposes, as the first parent of crossover is randomly drawn from it with probability
0.2. Since in each generation 50 × (50 + 50) games are played, 900 generations are
required to reach necessary number of games.

Parameter file for this setup is presented in Appendix B.2.

6.1 Experimental Setup 61

6.1.1.4 TDL + CEL = CTDL — Coevolutionary Temporal Difference Learning

CTDL combines TDL and CEL as it was described in Section 3.3.1, with the TDL
phase parameters adapted from 6.1.1.1 and the CEL phase parameters – from 6.1.1.2.
CTDL starts with a population of players with weights set to 0 and alternately repeat
TDL phase and CEL phase until the total number of 4.5 million games is attained.
The only new parameter introduced here is the intensity of individually performed
learning, which is expressed by a number of TDL games played per each TDL-CEL
cycle. This parameter determines the exact number of generations. For example, 10
TDL games played each time lead to a total of 3000 games per generation (including
round-robin tournament) and run length of 1, 500 generations.

Parameter file for this setup is presented in Appendix B.3.

6.1.1.5 TDL + CEL + HoF = CTDL with Hall of Fame

The last setup represents the most complex method combining setups 6.1.1.3 and
6.1.1.4. It does not involve any extra parameters.

6.1.2 Strategy Evaluation

Before we discuss particular experiments and obtained results, we need to consider
an important issue of how to measure the quality of evolved players. As learning
game strategy is an example of a test-based problem, accurate objective function
cannot be easily defined. Ideally, objective evaluation of an individual should take
into account games with all possible players and be based on a particular solu-
tion concept [Ficici 04]. This approach is impossible to implement in practice due
to inconceivably high number of possible strategies for Othello. Thus, following
[Lucas 06], we rely on two computationally feasible approximate quality measures
which are presented below.

In order to monitor the progress in an objective way, 50 times per experimen-
tal run (approximately every 90, 000 games) we assess the quality of the best-of-
generation individual. Both of defined measures estimate individual’s quality by
playing 1, 000 games (500 as black and 500 as white) against certain opponent(s)
and calculating the probability of winning. Note that the evaluation games, similarly
to learning ones, are also played at 1-ply.

• Playing against a set of random players: Arguably, this is the most com-
mon method employed in such circumstances, which tests how well the player
fares against a wide variety of opponents. The evaluation is based on playing
with player that for each board state chooses a random move. Notice that
this quality measure approximates the solution concept of Maximization of
Expected Utility introduced in [Ficici 04].

62 6 Experiments and Results

• Playing against a standard heuristic player: This measure tests how well the
player copes with moderately competent opponent whose WPC is depicted
in Figure 3.2. Since Othello is a completely deterministic game, we force
both players to make random moves with probability ε = 0.1 to diversify
their behavior and make the estimated values more continuous. Though this
essentially leads to a different game definition, we assume that the ability of
playing such a randomized game is highly correlated with playing the original
Othello.

6.1.3 Choosing Final Solutions

Another important question is: how to choose a final solution from the population
of strategies obtained at the end of evolution? Obviously, this problem does not
concern a pure TDL method because there is only one learning entity. There are a
few potential methods of tackling this issue:

• Choosing a strategy with the highest subjective fitness: This is probably the
best thing we could do in practice if we do not have an access to any objective
fitness measure. We just need to take into account the fitness based on intra-
population interactions, assuming that it is correlated with an objective quality
of the individual. This approach is used during our experiments, the individual
selected in this way is denoted as best-of-generation individual.
• Choosing a best strategy with respect to some estimation of objective fitness:

This is an interesting idea, but we need to evaluate the whole population what
may be very time-consuming; reducing the amount of time spent on evaluation
could lead to increasing the bias of the estimation.
• Choosing a random strategy from the population: Strategy chosen in this way is

expected to have performance equal to average playing ability of the population
individuals. Clearly, this is the easiest approach.

6.2 Main Results 63

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

p
ro

b
a

b
ili

ty
 o

f
w

in
n

in
g

games played (x 1000)

CEL

CEL + HoF

TDL

TDL + CEL

TDL + CEL + HoF

Fig. 6.1: Average performance of the best-of-generation individuals measured
as a probability of winning against a random player, plotted against the number
of training games played.

6.2 Main Results

In this section we present results of different experiments conducted using setups
described in Section 6.1.1. We start with a basic comparison of all examined methods
and the round-robin tournament between the best players found by each of them.
Next, we consider more specific experiments.

6.2.1 Basic Comparison

In the first experiment, we compared all the five methods. Figure 6.1 illustrates
how strategies produced by these algorithms perform on average against a pure
random player. Note that for population-based methods (i.e., all except pure TDL),
each point of the graph represents the objective quality (probability of winning)
of a best-of-generation individual averaged over 30 runs. For TDL, the graphs
show the average performance of the single solution maintained by this method.
It is interesting to observe that the algorithms can be divided into two groups
with respect to the performance they eventually achieve. The simplest non-hybrid
methods (CEL and TDL) are in the long run significantly worse than hybrid ones.
As expected, in the beginning, the quality of individuals produced by TDL-based
algorithms is higher than those produced by other methods.

64 6 Experiments and Results

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

p
ro

b
a

b
ili

ty
 o

f
w

in
n

in
g

games played (x 1000)

CEL

CEL + HoF

TDL

TDL + CEL

TDL + CEL + HoF

Fig. 6.2: Average performance of the best-of-generation individuals measured
as a probability of winning against a standard heuristic player (both players
were disturbed by random moves with probability equal to 0.1), plotted against
the number of training games played.

Basing on the graph 6.1 alone, we can see that both methods TDL + CEL and
TDL + CEL + HoF are decent choice, as they quickly achieve good performance
and they are best in the long run. Interestingly, the line generated by CEL + HoF
achieves eventually similar level to the hybrid TDL + CEL (+ HoF) approaches,
but the learning proceeds slower.

Figure 6.2 illustrates the progress of the same set of methods but measured as
the quality of the best-of-generation individuals versus a standard heuristic player.
The most striking observation is that hybrid approaches once again outperform the
original algorithms, this time even more remarkably. TDL + CEL + HoF is the
best, then TDL + CEL, TDL, CEL + HoF and CEL, which is the worst here. It
can also be observed that the HoF archive, despite its simplicity, help both CEL and
TDL + CEL methods to achieve a higher level of play. Nevertheless, regarding CEL
+ HoF setup, it needs approximately 10 times more games than the simplest hybrid
approach (TDL + CEL), to reach comparable performance. Another important
remark is that TDL learns rapidly indeed, but the progress is observable only during
the first several thousands of games and then it stagnates.

6.2 Main Results 65

Team Games Wins Draws Defeats Points
TDL + CEL + HoF 7200 4918 203 2079 14957
TDL + CEL 7200 4171 209 2820 12722
CEL + HoF 7200 3726 225 3249 11403
TDL 7200 2873 206 4121 8825
CEL 7200 1787 207 5206 5568

Tab. 6.1: Best-of-run tournament results.

 1.02 -0.27 0.55 -0.10 0.08 0.47 -0.38 1.00
-0.13 -0.52 -0.18 -0.07 -0.18 -0.29 -0.68 -0.44
 0.55 -0.24 0.02 -0.01 -0.01 0.10 -0.13 0.77
-0.10 -0.10 0.01 -0.01 0.00 -0.01 -0.09 -0.05
 0.05 -0.17 0.02 -0.04 -0.03 0.03 -0.09 -0.05
 0.56 -0.25 0.05 0.02 -0.02 0.17 -0.35 0.42
-0.25 -0.71 -0.24 -0.23 -0.08 -0.29 -0.63 -0.24
 0.93 -0.44 0.55 0.22 -0.15 0.74 -0.57 0.97

Fig. 6.3: WPC vector of the best player in the tournament.

6.2.2 Best-of-Run Tournament

In order to confirm our results, we conducted a second experiment in which we
investigate the relative ordering of the methods with respect to their results. We
performed a round-robin tournament between all best-of-run individuals, i.e., the
best-of-generation individuals from the last generation. We created 5 teams, one
for each method, each one composed of 30 best-of-run individuals (one per run).
Next, a round-robin tournament was played, where each strategy played against
4× 30 = 120 strategies from opponent teams for a total of 240 games (120 as white
and 120 as black). The final score of a team was determined as the sum of points
obtained by its players in overall 7, 200 games.

The results of this competition presented in Table 6.1 confirm the former ob-
servations. We can conclude that definitely the best method in direct comparison
is TDL + CEL + HoF approach. Moreover, the obtained ranking of methods is
consistent with the ranking obtained from measuring the quality against a standard
heuristic player (see Figure 6.2). This may be explained by the fact that in this tour-
nament, an individual faces exclusively well-performing strategies, so what matters
here is the ability to play against a competent opponent and not against a random
one. It is noteworthy that the CEL method, although it is the worst in the field,
can become much more successful thanks to employing any additional mechanism –
TDL or HoF. Indeed, both TDL + CEL and CEL + HoF teams gained more than
twice as many points as the simplest coevolutionary algorithm.

66 6 Experiments and Results

(a) Standard heuristic player (b) Winner of the best-of-run tournament

Fig. 6.4: WPC vectors illustrated as Othello boards with locations shaded
accordingly to corresponding weights.

The WPC vector of the best scoring player, who is a member of the winner team
TDL + CEL + HoF, is shown in Figure 6.3. Additionally it was also presented in
a more illustrative way by means of a weight-proportional grayscale in Figure 6.4b
(darker squares denote larger weights, i.e., more desirable locations on the board).
An important observation is that the WPC matrix is quite symmetric. Similarly
to the heuristic player’s strategy (see Figure 6.4a), the corner locations are the
most desirable while their immediate neighbors have very low weights. However,
in contrast to the heuristic player, the edge locations having distance 2 from the
corners get very high weights.

6.2.3 TDL Intensity

Preliminary experiments have shown that TDL intensity, i.e., the number of self-
played TD games per generation, is an important parameter of CTDL. Technically, it
is natural and convenient to interlace the CEL and TDL phases one-to-one. However,
CEL learns only from the final game outcome, while TDL exploits information from
every single move and, as the above results demonstrate, learns faster than CEL.

We have investigated this issue by running the best algorithm (TDL + CEL +
HoF) for different TDL intensities – 1, 2, 5, 10, and 50 TDL games per each TDL-
CEL cycle. The probability of winning of the best-of-generation individual against
the random player for different TDL intensities, presented in Figure 6.5, proves
that CTDL performance indeed depends on TDL-CEL ratio and that TDL-CEL
ratio greater than 1 can be destructive. This figure demonstrates also the tradeoff
between the learning speed and the ultimate player quality.

6.2 Main Results 67

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

p
ro

b
a

b
ili

ty
 o

f
w

in
n

in
g

games played (x 1000)

1 TDL game

2 TDL games

5 TDL games

10 TDL games

50 TDL games

Fig. 6.5: Average performance of the best-of-generation individuals found
by TDL + CEL + HoF method for different TDL intensities, measured as a
probability of winning against a random player, plotted against the number of
training games played.

In Figure 6.6, which illustrates the performance of produced strategies against
a standard heuristic player, different TDL intensities cause only slight differences
in the long run. This was confirmed by playing another best-of-run tournament
between setups with different number of TDL games. The tournament ended ended
with each team scoring a very similar number of points.

6.2.4 Negative Learning Rate

As we have seen above, the hybrid approach was able to learn remarkably better
strategies than the non-hybrid methods. An interesting question is whether the
purposeful (meaning: driven towards greater probability of winning) character of
changes brought in by TDL is essential, or TDL plays the role of a mere mutation.
To verify this, we compared regular TDL + CEL + HoF to TDL + CEL + HoF
with learning rate α = −0.01, which implies that TDL in the latter method deteri-
orates the strategies found by CEL. The results, shown in Figure 6.7, prove that a
purposeful TDL is a key factor explaining the success of the hybrid approach.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

p
ro

b
a

b
ili

ty
 o

f
w

in
n

in
g

games played (x 1000)

1 TDL game

2 TDL games

5 TDL games

10 TDL games

50 TDL games

Fig. 6.6: Average performance of the best-of-generation individuals found
by TDL + CEL + HoF method for different TDL intensities, measured as
a probability of winning against a standard heuristic player (forcing random
moves with probability 0.1), plotted against the number of games played.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

p
ro

b
a

b
ili

ty
 o

f
w

in
n

in
g

games played (x 1000)

TDL + CEL + HoF

TDL + CEL + HoF, negative learning rate

Fig. 6.7: Average performance of the best-of-generation individuals found by
TDL + CEL + HoF method for different learning rate values of TDL, measured
as a probability of winning against a standard heuristic player (both players
were disturbed by random moves with probability equal to 0.1), plotted against
the number of games played.

6.3 Minor Findings 69

6.3 Minor Findings

In this section we present additional experiments that were brought about by ob-
servations made during the preliminary tests. Particularly, it was noticed that the
way the strategies are initialized may have a substantial impact on the learning
process. Recall from Section 6.1 that in case of TDL-based approaches initialization
procedure sets all weights to 0. This is adapted from the previous work [Lucas 06]
where it is reported that such initialization leads to the best results. However, in
coevolution, similarly to traditional evolutionary approaches, random initialization
is the most commonly used method for generating initial population as it results
in covering different areas of the search space. Surprisingly, the following results il-
lustrate, that for this problem, even population-based algorithms should start with
zero-initialized candidate solutions.

Figures 6.8 and 6.9 show the results of TDL + CEL + HoF and CEL + HoF
methods for two different initialization procedures. Random-init draws each weight
uniformly from the range [−1, 1] while 0-init just sets all weights to 0 for all the
individuals. The main observation is that proper initialization can largely affect
the convergence speed of the learning process. Clearly, 0-init results in much faster
convergence for both algorithms. However, regardless of the initialization procedure,
our hybrid TDL + CEL + HoF algorithm outperforms conventional coevolutionary
approach in the long run. This is especially visible in Figure 6.9. It is also interesting
to observe, that our method is less sensitive to the choice of initialization type –
it achieves the same quality of the final solutions no matter how the population is
initialized. Such robustness, that is not observed in case of CEL + HoF, can be
viewed as another benefit of this approach.

Since we found quite unexpected the fact that it is favorable to initialize the
entire population with the same strategies, we tried to explain it by examining
in detail the evolution of Othello strategies. Figures 6.10 and 6.11 show how the
board evaluation function changes throughout the learning by TDL + CEL + HoF
method, for different initialization types. Although the final results in both figures
are almost identical, 0-init leads to obtaining solution similar to the last one much
faster than random-init. This corresponds to differences in the convergence speed
of these methods. Another important remark is that the key characteristic of a
well-playing WPC strategy for this problem are small weight values for the majority
of locations on the board. The 0-initialized strategy naturally meets this require-
ment, in contrast to the random one which has larger weight variation. Figure 6.11
illustrates that the evolutionary effort during the learning process is focused exactly
on reducing weight values for the middle locations.

70 6 Experiments and Results

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

p
ro

b
a

b
ili

ty
 o

f
w

in
n

in
g

games played (x 1000)

CEL + HoF, random init

CEL + HoF, 0-init

TDL + CEL + HoF, random init

TDL + CEL + HoF, 0-init

Fig. 6.8: Average performance of the best-of-generation individuals found
by TDL + CEL + HoF and CEL + HoF methods for different initialization
procedures, measured as a probability of winning against a random player,
plotted against the number of games played.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

p
ro

b
a

b
ili

ty
 o

f
w

in
n

in
g

games played (x 1000)

CEL + HoF, random init

CEL + HoF, 0-init

TDL + CEL + HoF, random init

TDL + CEL + HoF, 0-init

Fig. 6.9: Average performance of the best-of-generation individuals found
by TDL + CEL + HoF and CEL + HoF methods for different initialization
procedures, measured as a probability of winning against a standard heuristic
player (both players were disturbed by random moves with probability equal to
0.1), plotted against the number of games played.

Fig. 6.10: Evolution of zero-initialized individual illustrated as a sequence
of Othello boards (one drawing per 30 generations) colored accordingly to
corresponding WPC weights (light red = −1, light green = 1, black = 0).

Fig. 6.11: Evolution of randomly initialized individual illustrated as a se-
quence of Othello boards (one drawing per 30 generations) colored accordingly
to corresponding WPC weights (light red = −1, light green = 1, black = 0).

Chapter 7

Summary and Conclusions

In this study we presented a novel method of machine learning that hybridizes
coevolutionary search with reinforcement learning. This approach is particularly
interesting because of its unsupervised nature that makes it useful when the knowl-
edge of the problem domain is unavailable or expensive to obtain. We introduced
the Coevolutionary Temporal Difference Learning algorithm and drew an analogy
to Lamarckian evolution theory that explains its biological inspirations. The algo-
rithm was applied to the exemplary problem of learning Othello-playing strategy
and compared with previous approaches to this problem.

The experimental results demonstrate that the proposed hybrid algorithm is
capable of exploiting mutually complementary characteristics of both constituent
methods. The evolved learners achieve better performance in the long run and
the convergence of the learning process is faster. It is interesting to note that the
constructed Othello strategies reveal also basic “understanding” of the game, such
as the importance of the board corners. We investigated in detail the initialization
issue which plays an important role in the context of this specific problem.

Additionally, another benefit of this work is development of the co-Evolutionary
Computation in Java library which was thoroughly documented and tested. The
library is composed of the most important modern coevolutionary methods includ-
ing coevolutionary archives for different solution concepts and competitive fitness
sharing. Moreover, it was designed to be easy to extend and to allow flexible ex-
periment definition. The software integrates with a well-known ECJ system and,
thereby, may be helpful for many ECJ users.

7.1 Future Work

There are many aspects of the proposed approach that are worth further investiga-
tion. These aspects concern the tuning of the algorithm for the particular problem of
learning Othello strategy, as well as extensions of the coevolutionary reinforcement
learning approach that may be useful in general. Let us point out a few possible
directions of the future work:

74 Summary and Conclusions

• The simplest WPC strategy representation seems to limit the learning process
for this problem. Therefore, it would be useful to employ a more complex
architecture such as, for instance, a multi-layer nonlinear neural network.
• Apart from initialization, the details concerning other evolutionary process

stages may have also a great impact on the quality of the evolved Othello
strategies. Interesting possibilities include using geometric crossover during
breeding a new population or competitive fitness sharing in the the fitness
assignment stage.
• Using coevolutionary reinforcement learning with two-population coevolution

learner-teacher paradigm, with solutions and tests bred separately, would open
the possibility of using more advanced archive methods such as LAPCA and
IPCA [de Jong 07] and potentially obtaining better results.
• From the Lamarckian evolution perspective, our reinforcement learning pro-

cedure simulates learning that occurs throughout an organism’s lifetime and
accordingly modifies the genotype to pass the acquired traits on to offspring.
An alternative idea is to perform such learning solely in order to change the
phenotype – this would influence the evaluation process only. Clearly, this
idea is consistent with the Baldwin effect described in Section 3.3.3.
• As we discussed in Section 3.3.1, the aims of coevolutionary and temporal

difference learning phases are slightly conflicting. As a result, the CEL phase
may damage the effort of the preceding TDL phase. We reduce this clash by
setting an appropriate TDL intensity, but another idea is to perform some
sort of scaling procedure after each TDL-CEL cycle. This procedure should
normalize the weight values to make them compatible with the prediction
function worked out by TDL.

In summary, this work shows the potential of coevolutionary reinforcement learn-
ing method and points to the need of its further investigation in the context of other
challenging problems.

Appendix A

DVD Content

The DVD attached to this thesis contains:

• The software environment described in Chapters 4 and 5.
• Raw results of the experiments described in Chapter 6.
• The PDF version of this thesis.

Appendix B

Sample Parameter Files

B.1 Othello Single Population Coevolution
verbosity = 0
breedthreads = 1
evalthreads = 1
seed.0 = 2009
print-unused-params = true

pop = ec.Population
state = ec.simple.SimpleEvolutionState
init = ec.simple.SimpleInitializer
finish = ec.simple.SimpleFinisher
breed = ec.simple.SimpleBreeder
stat = ec.simple.SimpleStatistics
exch = ec.simple.SimpleExchanger
eval = cecj.eval.SimpleCoevolutionaryEvaluator

generations = 1800
checkpoint = false
prefix = ec
checkpoint-modulo = 1

pop.subpops = 1
pop.subpop.0 = ec.Subpopulation
pop.subpop.0.size = 50
pop.subpop.0.duplicate-retries = 0

pop.subpop.0.species = ec.vector.FloatVectorSpecies
pop.subpop.0.species.ind = ec.vector.DoubleVectorIndividual
pop.subpop.0.species.fitness = ec.simple.SimpleFitness
pop.subpop.0.species.genome-size = 64
pop.subpop.0.species.min-gene = -1
pop.subpop.0.species.max-gene = 1
pop.subpop.0.species.crossover-type = one
pop.subpop.0.species.mutation-prob = 0.03
pop.subpop.0.species.mutation-type = gauss

78 B Sample Parameter Files

pop.subpop.0.species.mutation-stdev = 0.25

pop.subpop.0.species.pipe = ec.vector.breed.VectorMutationPipeline
pop.subpop.0.species.pipe.source.0 = ec.vector.breed.VectorCrossoverPipeline
pop.subpop.0.species.pipe.source.0.source.0 = ec.select.TournamentSelection
pop.subpop.0.species.pipe.source.0.source.1 = ec.select.TournamentSelection
pop.subpop.0.species.pipe.source.0.source.0.size = 5
pop.subpop.0.species.pipe.source.0.source.1.size = 5

eval.problem = cecj.app.othello.Othello
eval.interaction-scheme = cecj.interaction.IntraPopulationInteractionScheme
eval.subpop.0.sampling-method = cecj.sampling.AllSamplingMethod
eval.subpop.0.fitness-method = cecj.fitness.SimpleSumFitness

stat.file = $out.stat
stat.num-children = 2
stat.child.0 = cecj.statistics.AverageObjectiveFitnessStatistics
stat.child.0.fitness-file = $fitness_random.stat
stat.child.0.fitness-calc = cecj.app.othello.OthelloRandomPlayer2
stat.child.0.fitness-calc.play-both = true
stat.child.0.fitness-calc.repeats = 500
stat.child.0.frequency = 36

stat.child.1 = cecj.statistics.AverageObjectiveFitnessStatistics
stat.child.1.fitness-file = $fitness_heuristic.stat
stat.child.1.fitness-calc = cecj.app.othello.OthelloHeuristicPlayer
stat.child.1.fitness-calc.play-both = true
stat.child.1.fitness-calc.repeats = 500
stat.child.1.fitness-calc.evaluated-randomness = 0.1
stat.child.1.fitness-calc.evaluator-randomness = 0.1
stat.child.1.frequency = 36

B.2 Othello Coevolution with Archive 79

B.2 Othello Coevolution with Archive

verbosity = 0
breedthreads = 1
evalthreads = 1
seed.0 = 2009

pop = ec.Population
state = ec.simple.SimpleEvolutionState
init = ec.simple.SimpleInitializer
finish = ec.simple.SimpleFinisher
breed = ec.simple.SimpleBreeder
stat = ec.simple.SimpleStatistics
exch = ec.simple.SimpleExchanger
eval = cecj.eval.ArchivingCoevolutionaryEvaluator

generations = 900
checkpoint = false
prefix = ec
checkpoint-modulo = 1

pop.subpops = 1
pop.subpop.0 = cecj.archive.ArchivingSubpopulation
pop.subpop.0.size = 50
pop.subpop.0.duplicate-retries = 0

pop.subpop.0.species = ec.vector.FloatVectorSpecies
pop.subpop.0.species.ind = ec.vector.DoubleVectorIndividual
pop.subpop.0.species.fitness = ec.simple.SimpleFitness
pop.subpop.0.species.genome-size = 64
pop.subpop.0.species.min-gene = -1
pop.subpop.0.species.max-gene = 1
pop.subpop.0.species.crossover-type = one
pop.subpop.0.species.mutation-prob = 0.03
pop.subpop.0.species.mutation-type = gauss
pop.subpop.0.species.mutation-stdev = 0.25

pop.subpop.0.species.pipe = ec.vector.breed.VectorMutationPipeline
pop.subpop.0.species.pipe.source.0 = ec.vector.breed.VectorCrossoverPipeline
pop.subpop.0.species.pipe.source.0.source.1 = ec.select.TournamentSelection
pop.subpop.0.species.pipe.source.0.source.1.size = 5

pop.subpop.0.species.pipe.source.0.source.0 = ec.select.MultiSelection
pop.subpop.0.species.pipe.source.0.source.0.num-selects = 2
pop.subpop.0.species.pipe.source.0.source.0.select.0 = cecj.archive.ArchiveRandomSelection
pop.subpop.0.species.pipe.source.0.source.0.select.0.prob = 0.2
pop.subpop.0.species.pipe.source.0.source.0.select.0.size = 50
pop.subpop.0.species.pipe.source.0.source.0.select.1 = ec.select.TournamentSelection
pop.subpop.0.species.pipe.source.0.source.0.select.1.prob = 0.8
pop.subpop.0.species.pipe.source.0.source.0.select.1.size = 5

80 B Sample Parameter Files

eval.problem = cecj.app.othello.Othello
eval.archive = cecj.archive.BestOfGenerationArchive
eval.interaction-scheme = cecj.interaction.IntraPopulationInteractionScheme
eval.subpop.0.sampling-method = cecj.sampling.AllSamplingMethod
eval.subpop.0.fitness-method = cecj.fitness.SimpleSumFitness
eval.subpop.0.archive-sampling-method = cecj.sampling.RandomSamplingMethod
eval.subpop.0.archive-sampling-method.sample-size = 50

stat.file = $out.stat
stat.num-children = 2
stat.child.0 = cecj.statistics.AverageObjectiveFitnessStatistics
stat.child.0.fitness-file = $fitness_random.stat
stat.child.0.fitness-calc = cecj.app.othello.OthelloRandomPlayer2
stat.child.0.fitness-calc.play-both = true
stat.child.0.fitness-calc.repeats = 500
stat.child.0.frequency = 18

stat.child.1 = cecj.statistics.AverageObjectiveFitnessStatistics
stat.child.1.fitness-file = $fitness_heuristic.stat
stat.child.1.fitness-calc = cecj.app.othello.OthelloHeuristicPlayer
stat.child.1.fitness-calc.play-both = true
stat.child.1.fitness-calc.repeats = 500
stat.child.1.fitness-calc.evaluated-randomness = 0.1
stat.child.1.fitness-calc.evaluator-randomness = 0.1
stat.child.1.frequency = 18

B.3 Othello Coevolutionary TD Learning 81

B.3 Othello Coevolutionary TD Learning

verbosity = 0
breedthreads = 1
evalthreads = 1
seed.0 = 1987

pop = ec.Population
state = ec.simple.SimpleEvolutionState
init = ec.simple.SimpleInitializer
finish = ec.simple.SimpleFinisher
breed = ec.simple.SimpleBreeder
stat = ec.simple.SimpleStatistics
exch = ec.simple.SimpleExchanger
eval = cecj.eval.TDLImprovingEvaluator

generations = 1500
checkpoint = false
prefix = ec
checkpoint-modulo = 1

pop.subpops = 1
pop.subpop.0 = ec.Subpopulation
pop.subpop.0.size = 50
pop.subpop.0.duplicate-retries = 0

pop.subpop.0.species = ec.vector.FloatVectorSpecies
pop.subpop.0.species.ind = ec.vector.DoubleVectorIndividual
pop.subpop.0.species.fitness = ec.simple.SimpleFitness
pop.subpop.0.species.genome-size = 64
pop.subpop.0.species.min-gene = -1
pop.subpop.0.species.max-gene = 1
pop.subpop.0.species.crossover-type = one
pop.subpop.0.species.mutation-prob = 0.03
pop.subpop.0.species.mutation-type = gauss
pop.subpop.0.species.mutation-stdev = 0.25

pop.subpop.0.species.pipe = ec.vector.breed.VectorMutationPipeline
pop.subpop.0.species.pipe.source.0 = ec.vector.breed.VectorCrossoverPipeline
pop.subpop.0.species.pipe.source.0.source.0 = ec.select.TournamentSelection
pop.subpop.0.species.pipe.source.0.source.1 = ec.select.TournamentSelection
pop.subpop.0.species.pipe.source.0.source.0.size = 5
pop.subpop.0.species.pipe.source.0.source.1.size = 5

eval.problem = cecj.app.othello.Othello
eval.inner-evaluator = cecj.eval.SimpleCoevolutionaryEvaluator
eval.inner-evaluator.problem = cecj.app.othello.Othello
eval.inner-evaluator.interaction-scheme = cecj.interaction.IntraPopulationInteractionScheme
eval.inner-evaluator.subpop.0.sampling-method = cecj.sampling.AllSamplingMethod
eval.inner-evaluator.subpop.0.fitness-method = cecj.fitness.SimpleSumFitness

82 B Sample Parameter Files

eval.tdl-improver = cecj.app.othello.OthelloTDLImprover
eval.tdl-improver.repeats = 10
eval.tdl-improver.randomness = 0.1
eval.tdl-improver.learning-rate = 0.01

stat.file = $out.stat
stat.num-children = 2
stat.child.0 = cecj.statistics.AverageObjectiveFitnessStatistics
stat.child.0.fitness-file = $fitness_random.stat
stat.child.0.fitness-calc = cecj.app.othello.OthelloRandomPlayer2
stat.child.0.fitness-calc.play-both = true
stat.child.0.fitness-calc.repeats = 500
stat.child.0.frequency = 24

stat.child.1 = cecj.statistics.AverageObjectiveFitnessStatistics
stat.child.1.fitness-file = $fitness_heuristic.stat
stat.child.1.fitness-calc = cecj.app.othello.OthelloHeuristicPlayer
stat.child.1.fitness-calc.play-both = true
stat.child.1.fitness-calc.repeats = 500
stat.child.1.fitness-calc.evaluated-randomness = 0.1
stat.child.1.fitness-calc.evaluator-randomness = 0.1
stat.child.1.frequency = 24

Bibliography

[Angeline 93] Peter J. Angeline & Jordan B. Pollack. Competitive Environments
Evolve Better Solutions for Complex Tasks. In ICGA, pages 264–
270, 1993.

[Bäck 97a] Thomas Bäck, David B. Fogel & Zbigniew Michalewicz. Hand-
book of evolutionary computation. IOP Publishing Ltd., Bristol,
UK, UK, 1997.

[Bäck 97b] Thomas Bäck, Ulrich Hammel & Hans paul Schwefel. Evolution-
ary Computation: Comments on the History and Current State.
IEEE Transactions on Evolutionary Computation, vol. 1, pages
3–17, 1997.

[Baldwin 96] Mark J. Baldwin. A New Factor In Evolution. American Natu-
ralist, vol. 30, pages 441–457, 1896.

[Bar-Cohen 05] Y. Bar-Cohen. Biomimetics - biologically inspired technologies.
CRC Press, 2005.

[Bucci 04] Anthony Bucci, Jordan B. Pollack & Edwin de Jong. Automated
Extraction of Problem Structure. In Genetic and Evolutionary
Computation–GECCO 2004. Proceedings of the Genetic and Evo-
lutionary Computation Conference. Part I, pages 501–512, Seat-
tle, Washington, USA, 2004. Springer-Verlag, Lecture Notes in
Computer Science Vol. 3102.

[Bucci 07] Anthony Bucci. Emergent geometric organization and informative
dimensions in coevolutionary algorithms. PhD thesis, Waltham,
MA, USA, 2007.

[Burkhardt 77] R.W. Burkhardt. The spirit of system: Lamarck and evolutionary
biology. Cambridge, MA: Harvard University Press, 1977.

84 B Bibliography

[Buro 95] M. Buro. Logistello: A Strong Learning Othello Program. In 19th
Annual Conference Gesellschaft für Klassifikation e.V., 1995.

[Buro 97] Michael Buro. Takeshi Murakami vs. Logistello, 1997.

[Buro 02] Michael Buro. Improving Heuristic Mini-Max Search by Super-
vised Learning. Artificial Intelligence, vol. 134, pages 85–99, 2002.

[Carroll 87] Lewis Carroll. Through the looking-glass. Plain Label Books,
1887.

[Caverlee 00] James B. Caverlee. A Genetic Algorithm Approach to Discov-
ering an Optimal Blackjack Strategy. In John R. Koza, editeur,
Genetic Algorithms and Genetic Programming at Stanford 2000,
pages 70–79. Stanford Bookstore, Stanford, California, 94305-
3079 USA, June 2000.

[Chomsky 93] Noam Chomsky. Language and thought. Moyer Bell, 1993.

[Coello 98] Carlos A. Coello Coello. A Comprehensive Survey of
Evolutionary-Based Multiobjective Optimization Techniques.
Knowledge and Information Systems, vol. 1, pages 269–308,
1998.

[Darwin 59] C. Darwin. On the origin of species by means of natural selection.
John Murray, London, UK, 1859.

[Dawkins 79] Richard Dawkins & J. R. Krebs. Arms Races between and within
Species. Proceedings of the Royal Society of London, Series B,
vol. 205, pages 489–511, 1979.

[de Jong 04a] E.D. de Jong. Towards a bounded Pareto-coevolution archive. In
Evolutionary Computation, 2004. CEC2004. Congress on, 2004.

[de Jong 04b] Edwin D. de Jong. The Incremental Pareto-Coevolution Archive.
Evolutionary Computation, vol. 12, no. 2, pages 525–536, 2004.

[de Jong 04c] Edwin D. de Jong & Jordan B. Pollack. Ideal Evaluation from
Coevolution. Evolutionary Computation, vol. 12, no. 2, pages
159–192, 2004.

[de Jong 05] Edwin D. de Jong. The MaxSolve algorithm for coevolution. In
GECCO, pages 483–489, 2005.

[de Jong 07] Edwin D. de Jong. A Monotonic Archive for Pareto-Coevolution.
Evolutionary Computation, vol. 15, no. 1, pages 61–93, 2007.

B Bibliography 85

[Dozier 98] G. Dozier, J. Bowen & A. Homaifar. Solving Constraint Satisfac-
tion Problems Using Hybrid Evolutionary Search. IEEE Transac-
tions on Evolutionary Computation, vol. 2(1), pages 23–32, 1998.

[Eiben 03] Agoston E. Eiben & J. E. Smith. Introduction to evolutionary
computing. SpringerVerlag, 2003.

[Epstein 94] Susan L. Epstein. Toward an ideal trainer. In Machine Learning,
pages 251–277, 1994.

[Ficici 98] Sevan G. Ficici & Jordan B. Pollack. Challenges in coevolution-
ary learning: Arms-race dynamics, open-endedness, and mediocre
stable states. In Proceedings of the Sixth International Conference
on Artificial Life, pages 238–247. MIT Press, 1998.

[Ficici 04] Sevan Gregory Ficici. Solution concepts in coevolutionary algo-
rithms. PhD thesis, Waltham, MA, USA, 2004. Adviser-Jordan
B. Pollack.

[Ficici 08] Sevan Gregory Ficici. Multiobjective Optimization and Coevo-
lution. In Multiobjective Problem Solving from Nature, pages
31–52. Springer Berlin Heidelberg, 2008.

[Floreano 08] Dario Floreano & Claudio Mattiussi. Bio-inspired artificial intel-
ligence: Theories, methods, and technologies. The MIT Press,
2008.

[Fogel 95] David B. Fogel & Lawrence J. Fogel. An Introduction to Evolu-
tionary Programming. In Artificial Evolution, pages 21–33, 1995.

[Fogel 02] David B. Fogel. Blondie24: playing at the edge of ai. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2002.

[Gamma 95] Erich Gamma, Richard Helm, Ralph Johnson & John M. Vlis-
sides. Design patterns: Elements of reusable object-oriented soft-
ware. Addison-Wesley Professional Computing Series, 1995.

[Gause 34] G. F. Gause. The struggle for existence. Hafner, 1934.

[Goldberg 89] David E. Goldberg. Genetic algorithms in search, optimization,
and machine learning. Addison-Wesley Professional, 1989.

[Grosan 07] Crina Grosan & Ajith Abraham. Hybrid evolutionary algorithms:
Methodologies, architectures, and reviews. Springer, 2007.

[Hillis 92] D. Hillis. Co-evolving parasites improves simulated evolution as
an optimization procedure. Artificial Life II, 1992.

86 B Bibliography

[Holland 62] John H. Holland. Outline for a Logical Theory of Adaptive Sys-
tems. J. ACM, vol. 9, no. 3, pages 297–314, 1962.

[Jaśkowski 07] Wojciech Jaśkowski, Krzysztof Krawiec & Bartosz Wieloch. Bril-
liANT: The Winner Entry of the GECCO’2007 Ant Wars Con-
test. Rapport technique RA-05/07, 2007.

[Juillé 96] Hugues Juillé & Jordan B. Pollack. Co-Evolving Intertwined Spi-
rals. In Evolutionary Programming, pages 461–468, 1996.

[Juillé 98] Hugues Juillé & Jordan B. Pollack. Coevolutionary Learning: A
Case Study. In ICML, pages 251–259, 1998.

[Kaelbling 96] Leslie Pack Kaelbling, Michael Littman & Andrew Moore. Rein-
forcement Learning: A Survey. Journal of Artificial Intelligence
Research, vol. 4, pages 237–285, 1996.

[Katayama 00] K. Katayama, H. Sakamoto & H. Narihisa. The Efficiency of
Hybrid Mutation Genetic Algorithm for the Travelling Salesman
Problem. Mathematical and Computer Modelling, vol. 31, pages
197–203, 2000.

[Kim 07a] Kyung-Joong Kim & Sung-Bae Cho. Evolutionary Algorithms
for Board Game Players with Domain Knowledge. In Advanced
Intelligent Paradigms in Computer Games, pages 71–89. Springer.
Studies in Computational Intelligence, Vol. 71., 2007.

[Kim 07b] Kyung-Joong Kim, Heejin Choi & Sung-Bae Cho. Hybrid of Evo-
lution and Reinforcement Learning for Othello Players. Computa-
tional Intelligence and Games, 2007. CIG 2007. IEEE Symposium
on, pages 203–209, 2007.

[Koza 92] John R. Koza. Genetic programming: On the programming of
computers by means of natural selection. MIT Press, Cambridge,
MA, USA, 1992.

[Lee 90] Kai-Fu Lee & Sanjoy Mahajan. The development of a world class
Othello program. Artif. Intell., vol. 43, no. 1, pages 21–36, 1990.

[Leouski 95] Anton Leouski. Learning of Position Evaluation in the Game of
Othello. Rapport technique, 1995.

[Lubberts 01] Alex Lubberts & Risto Miikkulainen. Co-Evolving a Go-Playing
Neural Network. In Richard K. Belew & Hugues Juillè, editeurs,
Coevolution: Turning Adaptive Algorithms upon Themselves,
pages 14–19, San Francisco, California, USA, 7 July 2001.

B Bibliography 87

[Lucas 06] Simon M. Lucas & Thomas Philip Runarsson. Temporal Differ-
ence Learning Versus Co-Evolution for Acquiring Othello Posi-
tion Evaluation. In CIG, pages 52–59, 2006.

[Luke 08] Sean Luke. ECJ 18 - A Java-based Evolutionary Computation
Research System. http://cs.gmu.edu/~eclab/projects/ecj/, 2008.

[Manning 07] Edward P. Manning. Temporal Difference Learning of an Oth-
ello Evaluation Function for a Small Neural Network with Shared
Weights. 2007.

[Margulis 02] Lynn Margulis & Dorion Sagan. Acquiring genomes: A theory of
the origins of species. HarperCollins, 2002.

[Miconi 08] Thomas Miconi. The Road to Everywhere: Evolution, Complex-
ity and Progress in Natural and Artificial Systems. PhD thesis,
University of Birmingham, 2008.

[Miconi 09] Thomas Miconi. Why Coevolution Doesn’t "Work": Superiority
and Progress in Coevolution. In EuroGP 2009, 2009.

[Miller 94] Geoffrey F. Miller & Dave Cliff. Protean behavior in dynamic
games: arguments for the co-evolution of pursuit-evasion tactics.
In SAB94: Proceedings of the third international conference on
Simulation of adaptive behavior : from animals to animats 3,
pages 411–420, Cambridge, MA, USA, 1994. MIT Press.

[Mitchell 97] Thomas M. Mitchell. Machine learning. McGraw-Hill, 1997.

[Monroy 06] German A. Monroy, Kenneth O. Stanley & Risto Miikkulainen.
Coevolution of neural networks using a layered pareto archive. In
GECCO, pages 329–336, 2006.

[Moriarty 97] David E. Moriarty, Alan C. Shultz & John J. Grefenstette. Rein-
forcement Learning through Evolutionary Computation. 1997.

[Neumann 58] John von Neumann. The computer and the brain. Yale University
Press, 1958.

[Nolfi 98] Stefano Nolfi & Dario Floreano. Coevolving Predator and Prey
Robots: Do "Arms Races" Arise in Artificial Evolution? Artificial
Life, vol. 4, no. 4, pages 311–335, 1998.

[Pagie 97] Ludo Pagie & Paulien Hogeweg. Evolutionary Consequences of
Coevolving Targets. Evolutionary Computation, vol. 5, no. 4,
pages 401–418, 1997.

http://cs.gmu.edu/~eclab/projects/ecj/

88 B Bibliography

[Panait 02] Liviu Panait & Sean Luke. A Comparison Of Two Competitive
Fitness Functions. In GECCO, pages 503–511, 2002.

[Paredis 97] Jan Paredis. Coevolving Cellular Automata: Be Aware of the Red
Queen. In Thomas Bäck, editeur, Proceedings of the Seventh
International Conference on Genetic Algorithms (ICGA97), San
Francisco, CA, 1997. Morgan Kaufmann.

[Parlett 99] David Parlett. Oxford history of board games. Oxford University
Press, 1999.

[Pollack 98] Jordan B. Pollack & Alan D. Blair. Co-Evolution in the Successful
Learning of Backgammon Strategy. Machine Learning, vol. 32,
no. 3, pages 225–240, 1998.

[Potter 00] M. Potter & K. De Jong. Cooperative Coevolution: An Architec-
ture for Evolving Coadapted Subcomponents. Evolutionary Com-
putation, vol. 8, no. 1, pages 1–29, 2000.

[Price 96] P. W. Price. Biological evolution. Saunders College Publishing,
Philadelphia, PA, 1996.

[Rechenberg 73] Ingo Rechenberg. Evolutionsstrategie. Frommann-Holzboog,
1973.

[Rosin 95] Christopher D. Rosin & Richard K. Belew. Methods for Compet-
itive Co-Evolution: Finding Opponents Worth Beating. In ICGA,
pages 373–381, 1995.

[Rosin 97] Christopher D. Rosin & Richard K. Belew. New Methods for Com-
petitive Coevolution. Evolutionary Computation, vol. 5, no. 1,
pages 1–29, 1997.

[Runarsson 05] Thomas P. Runarsson & Simon Lucas. Co-evolution versus Self-
play Temporal Difference Learning for Acquiring Position Eval-
uation in Small-Board Go. IEEE Transactions on Evolutionary
Computation, vol. 9, 2005.

[Runarsson 07] Thomas Philip Runarsson & Egill Orn Jonsson. Effect of look-
ahead search depth in learning position evaluation functions for
Othello. In IEEE Computational Intelligence and Games, pages
210–215, 2007.

[Samuel 59] Arthur L. Samuel. Some studies in machine learning using the
game of checkers. IBM Journal of Research and Development,
vol. 44, no. 1, pages 206–227, 1959.

B Bibliography 89

[Shannon 50] Claude E. Shannon. Programming a computer for playing chess.
Philosophical Magazine, vol. 41, pages 256–275, 1950.

[Sims 94a] Karl Sims. Evolving 3D Morphology and Behaviour by Competi-
tion. In R. Brooks & P. Maes, editeurs, Artificial Life IV Pro-
ceedings, pages 28–39, MIT, Cambridge, MA, USA, 1994. MIT
Press.

[Sims 94b] Karl Sims. Evolving virtual creatures. In SIGGRAPH, pages 15–
22, 1994.

[Singer 01] Joshua A. Singer. Co-evolving a Neural-Net Evaluation Function
for Othello by Combining Genetic Algorithms and Reinforcement
Learning. In International Conference on Computational Science
(2), pages 377–389, 2001.

[Stanley 05] Kenneth O. Stanley, Bobby D. Bryant & R. Miikkulainen. Real-
time neuroevolution in the NERO video game. Evolutionary Com-
putation, IEEE Transactions on, vol. 9, no. 6, pages 653–668,
2005.

[Sutton 88] Richard S. Sutton. Learning to Predict by the Methods of Tem-
poral Differences. Machine Learning, vol. 3, pages 9–44, 1988.

[Sutton 98] Richard S. Sutton & Andrew G. Barto. Reinforcement learning:
An introduction. The MIT Press, 1998.

[Tesauro 95] Gerald Tesauro. Temporal difference learning and TD-Gammon.
Commun. ACM, vol. 38, no. 3, pages 58–68, 1995.

[Van Valen 73] Leigh Van Valen. A new evolutionary law. Evolutionary Theory,
vol. 1, no. 1, pages 1–30, 1973.

[Viswanathan 05] Shivakumar Viswanathan. On The Coevolutionary Construction
Of Learnable Gradients, 2005.

[Watson 01] R. A. Watson & J. B. Pollack. Coevolutionary Dynamics in a Min-
imal Substrate. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2001), pages 702–709, 2001.

[Weise 09] Thomas Weise. Global optimization algorithms - theory and ap-
plication. 2009.

[Whitley 94] D. Whitley, V.S. Gordon & K. Mathias. Lamarckian Evolution,
the Baldwin Effect and Function Optimization. In Y. Davidor,
H.-P. Schwefel & R. Maenner, editeurs, Proc. Third International
Conference on Parallel Problem Solving from Nature (PPSN),

90 B Bibliography

volume 866 of Lecture Notes in Computer Science, pages 6–15,
New York, 1994. Springer-Verlag.

[Wiegand 01] R. Paul Wiegand, William Liles & Kenneth De Jong. An Em-
pirical Analysis of Collaboration Methods in Cooperative Coevo-
lutionary Algorithms. pages 1235–1242, 2001.

[Zufferey 08] Jean-Christophe Zufferey. Bio-inspired flying robots: experimen-
tal synthesis of autonomous indoor flyers. CRC Press, 2008.

	Introduction
	Scope and Objectives
	Thesis Organization

	Coevolution
	Coevolution in Nature
	Red Queen Effect
	Evolutionary Arms Race

	Coevolution in Computing
	Evolutionary Algorithms
	Coevolutionary Algorithms
	Coevolution vs. Evolution in Practice

	Othello and Coevolutionary Reinforcement Learning
	Othello
	Game Rules
	Strategy Representation
	Previous Research

	Conventional Learning Methods
	Coevolutionary Learning
	Temporal Difference Learning

	Hybrid Coevolutionary Algorithms
	Coevolutionary Temporal Difference Learning
	Other Hybrid Approaches
	Lamarckian Coevolution Perspective

	cECJ Design
	ECJ Overview
	Evolutionary Process within ECJ
	ECJ Class Diagram
	Breeding Mechanism
	ECJ Utilities

	cECJ Extensions
	Extended Evaluation
	Archive Mechanisms
	cECJ Class Diagram

	cECJ Implementation
	Evaluators
	Archives
	Archiving Subpopulation
	Archive as a Breeding Source

	Evaluating Infrastructure
	Sampling Methods
	Interaction Schemes and Interaction Results
	Fitness Aggregation Methods

	Test-based Problems
	Caching Evaluation Results
	Sample Problems -- Numbers Game and Othello

	Objective Fitness
	Objective Fitness Calculator
	Objective Fitness Statistics

	Board Games Interfaces

	Experiments and Results
	Experimental Setup
	Methods
	Strategy Evaluation
	Choosing Final Solutions

	Main Results
	Basic Comparison
	Best-of-Run Tournament
	TDL Intensity
	Negative Learning Rate

	Minor Findings

	Summary and Conclusions
	Future Work

	DVD Content
	Sample Parameter Files
	Othello Single Population Coevolution
	Othello Coevolution with Archive
	Othello Coevolutionary TD Learning

	Bibliography

