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Abstract. To acquire expert skills in a sequential decision making do-
main that is too vast to be explored thoroughly, an intelligent agent has
to be capable of inducing crucial knowledge from the most representative
parts of it. One way to shape the learning process and guide the learner
in the right direction is effective selection of such parts that provide the
best training experience. To realize this concept, we propose a shaping
method that orchestrates the training by iteratively exposing the learner
to subproblems generated autonomously from the original problem. The
main novelty of the proposed approach consists in equalling the learn-
ing process with the search in subproblem space and in employing a
coevolutionary algorithm to perform this search. Each individual in the
population encodes a sequence of subproblems that is evaluated by con-
fronting the learner trained on it with other learners shaped in this way
by particular individuals. When applied to the game of Othello, tem-
poral difference learning on the best found subproblem sequence yields
substantially better players than learning on the entire problem at once.
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1 Introduction

Many real-world problems concern sequential decision making where every single
decision changes the state of the environment and results in a reward. The main
difficulties with handling such problems arise from the fact that rewards can be
delayed in time. As a result, acting greedily is not always the best strategy and,
even more importantly, it is hard to determine which actions should be credited
with future rewards. Training an autonomous agent to maximize the cumulative
payoff in this kind of problems is formalized as reinforcement learning (RL)
[1]. This machine learning paradigm encapsulates the nature-related concept of
trial-and-error search for optimal behavior, guided by the interactions between
a learner and an unknown environment.

Past research shows that the most difficult RL problems are those with a long
sequence of unrewarded decisions leading to a single payoff at the end. Typical
examples of such scenarios are board games, where the only explicit reward is
the final game outcome. One way to aid the learning process in this case is to use
the idea of shaping, borrowed from behavioral psychology [2]. It assumes that a
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learner is trained on a series of easier problems before approaching the original
one. The main difficulty with shaping is that it requires very careful selection
of training problems that should possibly approximate the desired behavior [3].
Such expert-driven shaping involves substantial amount of domain knowledge,
and can introduce unnecessary biases into the learning process. In this context,
learning from scratch remains an unbiased and thus attractive alternative.

In this paper we propose a method for autonomous shaping without giving up
the above tabula rasa attitude. We employ competitive coevolution [4] to identify
appropriate training experience for an agent that learns a game playing strategy.
This leads to mapping the original problem of optimizing an agent’s policy into
a dual problem of finding the best input for the policy learning algorithm, while
preserving the ultimate goal of learning — maximization of an adopted quality
measure. The critical question one needs to answer to implement this form of
shaping is: where can we get the simpler training problems from? In the case of
games, endgames are the most obvious form of subproblems, as they naturally
include the final rewards, which are essential to do any learning at all. Assuming
that the training experience is gathered dynamically, starting from a given initial
game state, our idea is to change this initial state in such way that the following
interactions allow for faster and more general learning. More specifically, we
consider sequences of endgames, represent them as shaping vectors, and search
for the shaping vector that provides the best possible learning gradient.

We expect that learning from the pre-selected experience will converge faster
and improve the final performance of the trained agents. Additionally, the dual
problem definition can bring even more benefits. Firstly, the selected set of sub-
problems is a valuable source of knowledge about the problem structure. Indeed,
shaping vector can be considered as an analog to the concept of underlying objec-
tives of the problem [5], which here can be interpreted as the crucial set of skills
needed for successfully operating in the given environment. Secondly, diversifi-
cation of learning experience is a natural answer to the exploration-exploitation
trade-off. Performing random moves to explore the environment (for instance,
according to the so-called ε-greedy action selection scheme) could no longer be
needed if the shaping vector is diverse enough.

2 Shaping by Initial State Selection

We consider sequential decision problems, which are defined by a state space S,
a set of possible actions A, a default initial state so ∈ S, and a subset of terminal
states. Additionally, the environment specifies a reward function r : S ×A→ R

and a transition function f : S × A → S, which can be non-deterministic. The
objective is to automate the process of learning agents that solve such problems,
i.e., maximize the expected reward. An agent’s behavior is determined by its
policy π : S → A, π ∈ Π that for each state chooses an action leading to one
of the subsequent states. The set of states traversed by an agent in a single
episode is a directed path from s0 to one of the terminal states in the transition
graph that spans S. Such paths form samples of experience that can be used for
improving the policy.
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Fig. 1. The inner and outer loops of the shaping by initial state selection

We assume that an incremental learning algorithm T : Π × S → Π is given
that, provided with a current policy πk and an initial state s ∈ S, produces
an improved policy πk+1. In the online variant considered here, learning occurs
during exploration of the state graph: a training episode T (s, πk) consists in a
simulation of agent’s traversal through S, starting in s, with a single learning
step taking place after each state transition.

It is usually assumed, particularly in the domain of board games, that the
training process starts from the default initial state, i.e., T is always applied to
s0. This seems obvious, as, in the end, we want to learn a policy capable of solving
the entire problem (e.g. playing the full game). However, for many problems the
number of states that can be reached in the initial steps of problem solving is
low, and grows exponentially with subsequent steps. As a result, a learner that
starts from s0 is doomed to overexplore the initial stages of problem solving
while underexploring the final ones.

The main tenet of the proposed approach is that training a policy on a well-
assorted, properly diversified and representative set of subproblems can be more
beneficial than confronting it with the entire problem. We implement the concept
of a set of subproblems by defining shaping vector, which is simply a vector s
of m states si ∈ S, i = {1, . . . , m}, where, in accordance with the sequential
nature of considered problems, every si �= s0 identifies a subproblem of problem
s0 (assuming the transition graph is acyclic). A shaping vector can represent the
training experience from potentially different areas of the state graph.

We orchestrate the learning process by iteratively applying the learning algo-
rithm to consecutive elements of shaping vector: πi ← T (si, πi−1), where π0 is an
initial policy created in some arbitrary way. In this way, the experience gathered
in πi while solving subproblem si can be preserved when learning from subse-
quent subproblems. This inner learning loop (see Fig. 1) can iterate over the
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elements of experience multiple times, if needed. Ultimately, the obtained strat-
egy πs is expected to embody the knowledge derived form the set of subproblems
embedded in the shaping vector s.

The choice of subproblems to form the training experience is essential for
the performance of the trained policy. For instance, the particular assortment
of subproblems can make it impossible for the learner to visit certain states in
S during learning. In absence of objective guidelines that would help making
this choice, we delegate this task to evolutionary algorithm, which maintains a
population of individuals, each defining a training experience. Shaping vector
s forms then the genotype of an individual, while its phenotype is the policy
πs trained using the above learning procedure. Evaluation of the phenotype
formed in this way consists in running πs on the entire problem, starting from
s0, possibly multiple times if indeterminism is involved. The fitness of individual
can be then defined as, e.g., the average reward obtained by πs. In this way, the
evolutionary process becomes responsible for searching for the useful training
experiences, forming the outer loop of the proposed approach (Fig. 1).

In this paper we apply the above recipe for autonomous shaping to competitive
environments, in which solving sequential decision problems boils down to play-
ing games, and subproblems correspond to endgames. Rather than maximizing
the expected reward on a single problem in a static, single-agent environment,
we want to maximize the expected game outcome when playing against any
opponent, i.e., another agent that interferes at the decision making process.
This objective can be naturally implemented using coevolutionary algorithms,
in which the fitness of an individual depends on the outcomes of its interactions
with the other individuals in the population. Technically, we implement single-
population competitive coevolution [4]: in the evaluation phase, the strategies πs

derived from particular individuals play a round-robin tournament against each
other, and the total score received determines individual’s fitness.

Independently of the choice of the algorithm performing the outer learning
loop, the proposed approach can be then considered dual with respect to tradi-
tional methods of policy learning. Rather than aiming at acquisition of maximum
knowledge from the original problem by, e.g., tuning the parameters of the train-
ing algorithm, the focus of the method is on shaping, i.e., exposing the learner
to the ‘right’ training experience represented by selected subproblems. In short,
what to learn becomes here more important than how to learn. In this context,
the choice of the actual training algorithm T is of secondary importance: its
parameters, if any, remain fixed during the entire training process, and it only
serves as a means to assess the usefulness of particular set of initial states.

3 Experimental Setup

In the following we apply the proposed approach of autonomous shaping in its co-
evolutionary variant to the problem of learning to play the board game of Othello
(Fig. 2a). The experiments have been conducted using our coevolutionary algo-
rithms library cECJ [6] built upon the Evolutionary Computation in Java frame-
work. For each considered setup, evolutionary runs have been repeated 20 times.



Autonomous Shaping via Coevolutionary Selection of Training Experience 219

(a) Othello initial board state (b) Heuristic WPC weights

Fig. 2. Othello board and its coloring according to heuristic player weights (darker
color — greater weight)

Learner Architecture. One of the main issues to consider when learning game-
playing strategy is the architecture of the learner, which is mainly determined by
a strategy representation. Of many possible ways in which the strategies π ∈ Π
could be represented, we chose the simple weighted piece counter (WPC). WPC
assigns a weight wi to each board location i and uses scalar product to calculate
the utility f of a board state b:

f(b) =
8×8∑

i=1

wibi, (1)

where bi is +1, -1, or 0 if, respectively, location i is occupied by a black piece,
white piece, or empty. The players interpret the values of f in a complementary
manner: the black player prefers moves leading to states with larger values,
while smaller values are favored by the white player. Alternatively, WPC may
be viewed as an artificial neural network comprising a single linear neuron with
inputs connected to board locations. The standard heuristic player represented
as a WPC is illustrated in the Fig. 2b. We use it also as an opponent in our
experiments to measure the post-training performance of agents.

The Inner Learning Algorithm. We used the basic temporal difference
method TD(0) as the learning algorithm T that improves a game-playing strat-
egy on the basis of the training experience represented as a shaping vector (cf.
Section 2). The initial strategy π0 has all weights zeroed (see Eq. (1)). Given a
state si from the shaping vector s, invoking T (si, πk) consists in a single training
pass of self-play TD(0) with si as an initial state and πk determining the initial
values of WPC weights. Game outcomes determine the rewards. The weights of
WPC are modified after every move by a gradient-descent temporal difference
update rule [7] with the learning rate parameter set to α = 0.01. Each element
of the shaping vector was used as an initial state for 100 learning episodes to in-
crease the amount of experience gathered in the corresponding part of the game
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tree. TD(0) was previously applied for Othello [8], proving capable of producing
very good players in short training times.

The Outer Learning Algorithm. The outer learning algorithm, which targets
on optimizing the training experience used by the inner learning phase, is framed
as coevolutionary learning. The initial population comprises 50 shaping vectors,
each composed of m = 50 states selected randomly from games played between
two random players. The subsequent generations are bred by crossover followed
by mutation. The former operator is uniform and homologous, so an offspring
inherits m/2 randomly selected states from the first parent and the rest from
the second one, and the order of states is preserved. Mutation is applied to the
offspring with probability 0.05 per state and consists in replacing a state with a
newly generated random state. The genotype-phenotype mapping is realized by
the inner learning loop, and the evaluation consists of playing a population-wide
round-robin tournament between strategies created in this way. The players score
3, 1, or 0 points for winning, drawing, and losing, respectively. The total score
earned in the tournament becomes individual’s fitness, which is then subject to
tournament selection of size 5. Thus, we evaluate shaping vectors by judging the
performance of players created with their guidance.

4 The Results

The complete process of learning a game strategy using autonomous shaping in-
volves two phases. First, the method proposed in Section 2 attempts to evolve
the best shaping vector for the given learning algorithm. In the second phase, this
vector is employed to train a strategy, which becomes the final outcome of the
overall training process. All players in our experiments are deterministic, as well
as the game of Othello itself. Thus, in order to estimate the score of a given trained
player against the WPC-heuristic (Fig. 2b), we forced both players to make ran-
dom moves with probability ε = 0.1. This provides richer repertoire of players’
behaviors and makes the resulting estimates more continuous and robust.

Phase 1: Search for the Best Shaping Vector. The objective progress of
this procedure was monitored by assessing the quality of the fittest player, i.e.,
the player that appeared the best among all the players trained with particular
shaping vectors. We call this player the best-of-generation learner.

Figure 3 illustrates the performance of the best-of-generation learners, aver-
aged over 20 coevolutionary runs. For reference, we plot also best-of-generation
players found by standard coevolutionary search performed directly in the space
of WPC strategies (for more details see [8]). Clearly, coevolution of training ex-
perience outperforms the direct approach. The level of play it attains is very
similar to the best strategies obtained using CTDL, a hybrid of coevolution and
TDL proposed in our previous work [8].
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Fig. 3. Comparison of the average performance of the best-of-generation learners
shaped by coevolved training experience and the best-of-generation players coevolved
directly, against the WPC-heuristic opponent

Phase 2: Training the Strategy Using the Best Shaping Vector Found.
In this phase, the best shaping vector found in phase 1 is mapped to a strategy
using the genotype-phenotype mapping described in Section 2. We take a deeper
look at this inner learning process realized by TD(0) algorithm.

Figure 4 visualizes the learning from the training experience embodied by the
best shaping vector. Every thin blue curve depicts the mean performance of a
strategy trained using the best shaping vector found in one of 20 evolutionary
runs. The horizontal axis corresponds to the inner learning loop shown in Fig.
1 (as opposed to Fig. 3, where it marked the iterations of the outer loop). Each
learning episode corresponds to an application of the training algorithm (TD(0))
to a single initial state, T (si, πk), so the horizontal axis is simply the k axis.

The thick red line shown in Fig. 4 depicts the behavior of the the standard
TDL learning process, starting always from s0 (illustrated in Fig. 2a), which
gathers experience by ε-greedy action selection scheme (with ε equal to 0.1).
Standard TDL clearly stalls much earlier than the shaping approach, and attains
substantially worse performance at the end of training.

Performance against the WPC-heuristic says only a little about the overall
objective quality of a strategy, because in practice we typically aim at produc-
ing versatile and robust players, capable of winning against a wide range of
opponents. Thus, we gauged also the relative performance against other players
trained using different methods. To this aim, we confront the teams of best-of-run
strategies obtained from 20 runs with the team of players that have been trained
on full games, using TD(0) randomized self-play starting from the default initial
state s0. Table 1 presents the outcomes of that duel, with the shaping-trained
strategies sorted descendingly with respect to their outcome. The teams of strate-
gies produced using the proposed approach are clearly superior. Even the worst
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Fig. 4. The average performance of the learners trained with the best shaping vectors
(blue, one plot per vector) vs. the average performance of the learners trained from full
games (default experience, red), as a function of the number of TD(0) training episodes

Table 1. The outcomes of matches played between the teams of players obtained
using the shaping approach with a team of strategies trained using randomized self-
play TD(0)

Run # Wins Draws Losses Points % pts. Run # Wins Draws Losses Points % pts.

1 508 20 272 1544 64.33 11 476 22 302 1450 60.42

2 497 36 267 1527 63.63 12 472 33 295 1449 60.38

3 497 23 280 1514 63.08 13 475 23 302 1448 60.33

4 495 22 283 1507 62.79 14 476 15 309 1443 60.13

5 492 20 288 1496 62.33 15 472 26 302 1442 60.09

6 488 28 284 1492 62.17 16 474 17 309 1439 59.96

7 486 26 288 1484 61.83 17 465 28 307 1423 59.29

8 482 32 286 1478 61.58 18 464 24 312 1416 59.00

9 478 35 287 1469 61.21 19 453 37 310 1396 58.17

10 476 27 297 1455 60.63 20 457 24 319 1395 58.13

of them wins substantially more games than it loses. Also, the performance of
particular teams varies only slightly, with most of them scoring between 59 and
62% of all available points. This clearly suggests that the search for initial state
vectors, though intermediated by the nontrivial genotype-phenotype mapping,
repeatedly leads to producing stable and well-performing players.

5 Discussion and Related Work

The problem of selecting the training experience for a reinforcement learning
agent has been addressed by several authors. Mihalkova and Mooney [9] propose
a method for improving the reinforcement learning by allowing the learner to
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relocate, i.e., to be placed in a requested state of the environment. An agent
may benefit from this possibility by omitting the already known regions of the
environment (when the agent is “bored” and is not learning anything new) or
escaping from the parts of the state space that are unlikely to be visited again
using the optimal policy (when the agent made a wrong exploratory move and
fell “in trouble”). Relocation destinations are chosen according to an uncertainty
measure reflecting agent’s confidence about the best action in a given state.
This approach differs from ours in being inherently active — it is the learner
who makes decisions about when and where to relocate within an online training
process. In this context, our method resembles more the selective sampling used
in traditional supervised active learning [10].

A complementary passive approach is taken by Rachelson et al. [11] who
introduce the meta-algorithm of Optimal Sample Selection (OSS). Given a batch-
mode RL policy inference algorithm, a policy evaluation method, and a gener-
ative model of the environment, OSS attempts to identify a set of one-step
transitions which, when supplied to the policy learning algorithm, lead to an
optimal behavior with respect to the evaluation measure. In this method the
learning proceeds independently from the selection of training experience — the
learner cannot affect the way the experience is gathered. Also, the policy learning
algorithm is assumed to work in an offline batch manner, i.e., it exploits a fixed,
prepared in advance set of training examples (sample of transitions), without a
need of dynamically interacting with the environment. Our approach abstracts
from the character of the policy learning algorithm and is more coarse-grained
— instead of selecting single transitions, we find entire states that implicitly
identify many useful paths through the environment. This allows us to represent
the training experience in a more compact, illustrative, and generic way.

Finally, changing the initial state can be seen as a slight modification of the
learning task itself. What we finally want to achieve is then the transfer of
knowledge from a set of adjusted task to the original problem. We expect that
it can improve the learning process in the same way as the transfer learning
[12], including initial performance, time of learning and final performance. In a
similar spirit, Konidaris and Barto [13] investigate knowledge transfer across a
sequence of tasks and employ an autonomous shaping approach by augmenting
reward functions – they use the knowledge about predicted rewards from one
task to shape the reward function of the other one.

6 Summary

In learning game-playing strategies, it is typically the role of a trainer to guide
the learner through the paths of the game tree from which it can learn the
most. This study revolved around the observation that such guidance can take
on different forms. Naturally, the trainer is embodied by an opponent, e.g., an
expert player or the learner itself [14]. In the proposed method, the opponent
strategy, though varying with time, is stationary in being produced by a fixed
learning algorithm, while the role of guidance is delegated to a set of initial
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states that limit the exploration to the corresponding partial game trees. We
are not looking for an ideal trainer here, but for an ideal training experience.
Eventually, the goal is to shape the learning process so that it produces proficient
learners prepared to perform well in every, potentially unseen before, region of
environment. This goal has been attained in this study for the game of Othello:
rephrasing a learning task in a way that enables autonomous shaping led to
better performing and more versatile players. Applicability of this approach to
other interactive and non-interactive domains is to be verified in future research.
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