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Abstract—The highly addictive stochastic puzzle game 2048
has recently invaded the Internet and mobile devices, stealing
countless hours of players’ lives. In this study we investigate
the possibility of creating a game-playing agent capable of
winning this game without incorporating human expertise or
performing game tree search. For this purpose, we employ three
variants of temporal difference learning to acquire i) action value,
ii) state value, and iii) afterstate value functions for evaluating
player moves at 1-ply. To represent these functions we adopt n-
tuple networks, which have recently been successfully applied to
Othello and Connect 4. The conducted experiments demonstrate
that the learning algorithm using afterstate value functions is
able to consistently produce players winning over 97% of games.
These results show that n-tuple networks combined with an
appropriate learning algorithm have large potential, which could
be exploited in other board games.
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I. INTRODUCTION

The puzzle game 2048 is an addictive single-player, nonde-
terministic video game, which has taken the Internet by storm.
According to its author, Gabriele Cirulli, during the first three
weeks after the release, people spent a total time of over 3000
years on playing the game. Besides the official online version1

and its numerous browser-based variants, clones of 2048 have
reached the top of the most downloaded mobile applications
rankings2. One of the reasons of the game’s massive popularity
is that it is very easy to learn but hard to master. Indeed, the
game’s author admitted that out of hundreds million of games
ever played only about 1% have been won. The difficulty of
the game together with the simplicity of its rules makes it an
interesting testbed for artificial intelligence methods.

To the best of our knowledge, the only artificial intelligence
techniques applied so far to the game 2048 involve game tree
search with manually designed heuristic evaluation functions,
which are based on human analysis of the game properties
[1]. Here we ask the question whether a position evaluation
function can be developed without the use of expert knowledge.
Moreover, we are interested in such a function that is suffi-
ciently accurate to be successfully used at 1-ply, i.e., without
performing game tree search.

To investigate this issue, we compare three temporal differ-
ence learning methods applied to develop a position evaluation
function represented by systematic n-tuple networks [2]. These

1http://gabrielecirulli.github.io/2048/
22048 itself is a derivative of the games 1024 and Threes.

(a) The sample initial game state
s0. All four actions are possible
to take.

(b) The state s1 after the action
UP in s0. A random 2-tile was
generated in the upper left corner.

(c) The state s2 after taking the
action LEFT in s1. The reward
r2 = 4 was assigned for merging
two 2-tiles.

(d) The state s3 after taking the
action LEFT in s2. The reward
r3 = 8 was assigned for merging
two 4-tiles.

Figure 1: A sample sequence of initial states and actions.

methods provide a knowledge-free way of elaborating game-
playing strategies [3]. Experimental results show that the
strategies obtained in this way are not only extremely fast at
making moves, but also able to win more than 97% of games.
Such performance is higher than that achieved by a minimax
algorithm with alpha-beta pruning [1].

II. GAME 2048

2048 is a single-player, nondeterministic, perfect informa-
tion video game played on a 4× 4 board. Each square of the
board can either be empty or contain a single v-tile, where
v is a positive power of two and denotes the value of a tile.
The game starts with two randomly generated tiles. Each time
a random tile is to be generated, a 2-tile (with probability
p2 = 0.9) or a 4-tile (p4 = 0.1) is placed on an empty square
of the board. A sample initial state is shown in Fig. 1a.
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The objective of the game is to slide the tiles and merge the
adjacent ones in order to ultimately create a tile with the value
of 2048. At each turn the player makes a move consisting in
sliding all the tiles in one of the four directions: UP, RIGHT,
DOWN or LEFT. A move is legal if at least one tile is slid.
After each move, a new 2-tile or 4-tile is randomly generated
according to the aforementioned probabilities. For instance,
Fig. 1b illustrates that after sliding UP both initial tiles, a
random 2-tile is placed in the upper left corner.

A key operation that allows to obtain tiles with increasingly
larger values consists in merging adjacent tiles. When making
a move, each pair of adjacent tiles of the same value is
combined into a single tile along the move direction. The
new tile is assigned the total value of the two joined tiles.
Additionally, for each such merge, the player gains a reward
equal to the value of the new tile. Figure 1c shows the board
resulting from combining two 2-tiles in the upper row when
sliding the tiles in the LEFT direction. Another LEFT move
leads to creating an 8-tile (see Fig. 1d). The moves generate
rewards of 4 and 8, respectively.

The game is considered won when a 2048-tile appears on
the board. However, players can continue the game even after
reaching this tile. The game terminates when there are no legal
moves, i.e., all squares are occupied and there are no two
adjacent tiles sharing the same value. The game score is the
sum of rewards obtained throughout the game.

III. METHODS

In this section we discuss how to create a game-playing
agent capable of winning the game 2048 without incorporating
human expertise. Our approach is based on temporal difference
learning (TDL, [4]), a widely applied class of reinforcement
learning [5] methods. This approach enables an agent to
autonomously learn sequential decision making just by trial-
and-error runs in the environment framed as a Markov decision
process [6].

A. Markov Decision Processes

The framework of Markov decision processes (MDPs) al-
lows to model problems in which an agent must perform a
sequence of actions in the given environment. Actions change
the state of the environment and typically result in both
immediate and delayed consequences that can be quantified
as rewards for the agent.

Formally, an MDP is a discrete time stochastic control
process, and can be defined as 〈S,A,R, P 〉, where:

• S is a set of possible states of the environment,
• A is a set of actions and A(s) ⊆ A denotes a set of

actions available in state s ∈ S,
• R : S × A → R is a reward function, where R(s, a)

provides the reward for making action a in state s,
• P : S×A×S → [0, 1] is a stochastic transition function,

where P (s, a, s′′) denotes the probability of transition to
state s′′ in result of taking action a in state s.

The objective of an agent placed in an environment defined as
an MDP is to learn such a decision making policy π : S → A
that maximizes the expected cumulative reward.

The game 2048 can be naturally formulated as an MDP,
in which states are board positions and actions are legal
moves. Both the reward function and the transition function are
clearly specified by the game rules. Importantly, the transition
function is nondeterministic due to the random tile generation
procedure, which determines the probabilities P (s, a, s′′).

B. Temporal Difference Learning

Since the influential work of Tesauro [7] and the success of
his TD-Gammon player learned through self-play, TDL has
become a well-known approach for elaborating game-playing
agents with little or no help from human designer or expert
strategies given a priori. Although TDL was introduced by
Sutton [4], its origins reach back to the famous checkers
playing program developed by Samuel [8]. Nevertheless, it
was TD-Gammon that has triggered off extensive research on
using TDL to learn policies for such games as Go [9], [10],
Othello [11], [12], and Chess [13].

As an intermediate step towards learning decision making
policies, TDL methods compute value functions. The state
value function V π : S → R estimates the expected cumulative
reward that will be received by the agent if it uses policy π to
make actions starting from a given state s ∈ S. In the context
of playing games, the state value function predicts how much
points the agent will get from the given state till the end of
the game.

To learn the state value function, the agent uses experience
from interactions with the environment. Whenever the agent
takes an action a, observes a state transition s → s′′ and
receives a reward r, it updates the current estimate of V (s). In
particular, the simplest TDL algorithm [4], known as TD(0),
employs the following update rule:

V (s)← V (s) + α(r + V (s′′)− V (s)). (1)

This rule attempts to minimize the difference between the
current prediction of cumulative future reward V (s) and the
one-step-ahead prediction, which involves the actual (received)
reward r and is equal to r + V (s′′). Consequently, the error
between the successive predictions δ = r + V (s′′) − V (s) is
used to adjust the value of state s. The size of correction is
determined by the learning rate α ∈ [0, 1].

For some problems, it might be more effective to learn the
action value function Qπ : S × A → R, which estimates
the utility of a given state-action pair, i.e., the expected sum
of future rewards after making action a ∈ A(s) in state
s ∈ S. One of the most recognized algorithms for learning
action value functions is Q-LEARNING [14], which operates
in a similar way to TD(0). Upon observing a transition
(s, a, r, s′′), it updates the action value estimates as follows:

Q(s, a)← Q(s, a)+α(r+ max
a′∈A(s′′)

Q(s′′, a′)−Q(s, a)). (2)

June 16, 2014 PREPRINT



s0, r = Compute Afterstate(s, a = right)

r = 40

s00 =s0 =s =

s00 = Add Random Tile(s0)

Figure 2: A two-step state transition occurring after taking the action a = RIGHT in the state s.

C. Learning Game-Playing Policies

In this section we describe how both TDL algorithms,
namely TD(0) and Q-LEARNING, can be employed to develop
a game-playing policy for the game 2048. Figure 3 presents
the pseudocode of the game engine used throughout this study
to play and learn the game. The crucial part of the game
mechanics is implemented by the function MAKE MOVE,
which for a given state s ∈ S and action a ∈ A(s) returns a
received reward and an observed state transition.

Importantly, in the case of 2048 the state transition can be
regarded as a two-step process, which is illustrated in Fig. 2.
Firstly, the deterministic afterstate s′ and the reward r are
computed by sliding and merging the tiles according to the
selected action a. Secondly, a random tile is added to the
afterstate s′ to create the next state s′′, in which the agent will
make its next move. We will exploit the notion of afterstates
in one of the employed learning algorithms.

The actual game-playing policy is determined by the func-
tion EVALUATE, which attempts to measure the utility of
taking each possible action a ∈ A(s) in the current state s.
Moves are selected to maximize the value returned by this
function. Consequently, learning a policy consists in adjusting
this function in order to make more accurate moves evaluation.

In the following subsections we consider three different
ways of implementing the EVALUATE function. Each of them
requires a dedicated LEARN EVALUATION algorithm, which
adjusts the evaluation function on the basis of the observed
experience represented by a tuple (s, a, r, s′, s′′).

1) Evaluating actions: A straightforward approach to im-
plement the EVALUATE(s, a) function is to employ directly
the action value function Q(s, a). In such case the agent takes
actions specified by the following policy:

π(s) = arg max
a∈A(s)

Q(s, a).

Since the game 2048 involves only four actions, instead of a
single Q-function we can maintain four state value functions
— a separate function Va for each action a ∈ A. This approach

1: function PLAY GAME
2: score← 0
3: s← INITIALIZE GAME STATE
4: while ¬IS TERMINAL STATE(s) do
5: a← arg maxa′∈A(s) EVALUATE(s, a′)
6: r, s′, s′′ ← MAKE MOVE(s, a)
7: if LEARNING ENABLED then
8: LEARN EVALUATION(s, a, r, s′, s′′)

9: score← score+ r
10: s← s′′

11: return score
12:
13: function MAKE MOVE(s, a)
14: s′, r ← COMPUTE AFTERSTATE(s, a)
15: s′′ ← ADD RANDOM TILE(s′)
16: return (r, s′, s′′)

Figure 3: A pseudocode of a game engine with moves selected
according to the evaluation function. If learning is enabled, the
evaluation function is adjusted after each move.

1: function EVALUATE(s, a)
2: return Va(s)

3:
4: function LEARN EVALUATION(s, a, r, s′, s′′)
5: vnext ← maxa′∈A(s′′) Va′(s

′′)
6: Va(s)← Va(s) + α(r + vnext − Va(s))

Figure 4: The action evaluation function and Q-LEARNING.

is illustrated in Fig. 4. The functions are learned according to
the Q-LEARNING update rule (cf. Equation 2).

2) Evaluating states: An alternative approach to evaluating
moves is to assess the states in which they result with the
state value function V (s). In contrast to evaluating actions
(cf. Fig. 4), this approach requires from the agent to know
the environment model, i.e., the reward function R and the
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1: function EVALUATE(s, a)
2: s′, r ← COMPUTE AFTERSTATE(s, a)
3: S′′ ← ALL POSSIBLE NEXT STATES(s′)
4: return r +

∑
s′′∈S′′ P (s, a, s′′)V (s′′)

5:
6: function LEARN EVALUATION(s, a, r, s′, s′′)
7: V (s)← V (s) + α(r + V (s′′)− V (s))

Figure 5: The state evaluation function and TD(0).

transition function P . If this requirement is satisfied, the agent
can use the following policy to select actions:

π(s) = arg max
a∈A(s)

[
R(s, a) +

∑
s′′∈S

P (s, a, s′′)V (s′′)

]
.

The corresponding EVALUATE function is shown in Fig. 5.
Noteworthy, evaluating a move requires computing all possible
states resulting from this move and applying the state value
function to each of them. In the case of the game 2048 there
may be as many as 30 different transitions that may result from
making a single move (there are up to 15 empty squares in the
afterstate, and two different types of tiles may be placed on
each square). For this reason, when compared with the action
evaluation scheme, which requires only a single calculation of
the V -function, this approach is expected to be significantly
slower. On the other hand, the learning procedure is simple and
consists in adjusting the state value function with the TD(0)
update rule (cf. Equation 1).

3) Evaluating afterstates: The last considered approach
to evaluate moves can be regarded as a combination of the
action evaluation and the state evaluation. This approach uses
a single value function V , but instead of applying it to states,
as in the case of the state evaluation, it assesses the values
of afterstates. Since for each move there is only a single
deterministic afterstate, the evaluation is almost as fast as in
the case of the action evaluation. In this approach, the agent
takes actions according to the following policy:

π(s) = arg max
a∈A(s)

[R(s, a) + V (T (s, a))] ,

where T (s, a) denotes the mapping from state s and action a
to the resulting afterstate s′. Figure 6 presents the afterstate
evaluation function. The learning procedure involves comput-
ing the error between two subsequent afterstates. Therefore, it
starts with determining the next action that would be taken
by the agent in the new state anext = π(s′′) and uses it
to compute the next reward rnext and the new afterstate
s′next = T (s′′, anext). Knowing s′, s′next and rnext it updates
the value of the recently observed afterstate s′.

D. N-tuple Network Evaluation Function

The major design choice concerns the representation of the
value functions V : S → R, which are used by each of
the considered algorithms to evaluate moves and, in effect,
determine the game-playing policy. In problems with small

1: function EVALUATE(s, a)
2: s′, r ← COMPUTE AFTERSTATE(s, a)
3: return r + V (s′)

4:
5: function LEARN EVALUATION(s, a, r, s′, s′′)
6: anext ← arg maxa′∈A(s′′) EVALUATE(s′′, a′)
7: s′next, rnext ← COMPUTE AFTERSTATE(s′′, anext)
8: V (s′)← V (s′) + α(rnext + V (s′next)− V (s′))

Figure 6: The afterstate evaluation function and a dedicated
variant of the TD(0) algorithm.

state spaces, the value function V can be represented directly,
as a look-up table, with each value stored individually. The
game 2048 has ca. (4× 4)18 ≈ 4.7× 1021 states because the
maximum value of a single tile3 is 217 = 131072. Therefore,
using an explicit value table is computationally infeasible.
Instead, we have to use a function approximator that adopts
a class of parameterized functions to replace the value table.
One particular type of such approximators are n-tuple networks
[15], which have been recently successfully applied to Othello
[16], [17], [18], [12] and Connect 4 [19].

An n-tuple network consists of m ni-tuples, where ni is
tuple’s size. For a given board state s, it calculates the sum
of values returned by the individual n-tuples. The ith ni-tuple,
for i = 1 . . .m, consists of a predetermined sequence of board
locations (locij)j=1...ni , and a look-up table LUTi. The latter
contains weights for each board pattern that can be observed
on the sequence of board locations. Thus, an n-tuple network
implements a function f :

f(s) =

m∑
i=1

fi(s) =

m∑
i=1

LUTi
[
index

(
sloci1 , . . . , slocini

)]
,

index (v) =

|v|∑
j=1

vjc
j−1,

where slocij is a board value at location locij , v is a sequence
of board values (the observed pattern) such that 0 ≤ vj < c,
for j = 1 . . . |v|, and c is a constant denoting the number
of possible board values. As we have already pointed out,
theoretically c is equal to 18 in the game 2048, but in order to
limit the number of weights in the network, in the experiments
we assume c = 15. An empty square is encoded as 0, while
a square containing a value v as log2 v, e.g., 128 is encoded
as 7. See Fig. 7 for an illustration.

IV. COMPARISON OF THE LEARNING METHODS

In the first experiment, we compared the performance of
the three learning methods described in Section III-C. To
provide fair comparison, each method used the same number
of training games equal to 500 000. For statistical significance,
each experimental run was repeated 30 times.

3Practically, we are not aware of any credible reports of obtaining a tile
with a value higher than 214 = 16384.
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0123 weight

0000 3.04
0001 −3.90
0002 −2.14
...

...
0010 5.89
...

...
0130 -2.01
...

...

Figure 7: A straight 4-tuple on a 2048 board. According to the
values in its lookup table, for the given board state it returns
−2.01, since the empty square is encoded as 0, the square
containing 2 as 1, and the square containing 8 as 3.

Figure 8: The n-tuple network consisting of all possible
horizontal and vertical straight 4-tuples (red and green, re-
spectively), and all possible 2× 2 square tuples (blue).

A. Experimental Setup

1) N-tuple network architecture: An important design issue
of an n-tuple network architecture is the location of individual
n-tuples on the board [12]. Although this is not a formal
requirement, due to the spatial nature of game boards, n-tuples
are usually consecutive sequences of locations [15][16].

For the game 2048, a single n-tuple involves 15n weights.
Thus, in order to obtain networks with a manageable number
of weights, we limited the length of tuples to 4. We used
a systematic n-tuple network [2] consisting of 4 horizontal
and 4 vertical 4-tuples, and 9 ‘square’ 4-tuples (see Fig. 8).
In total, a network contained 17 4-tuples and thus involved
17× 154 = 860 625 weights.

2) Learning algorithms: All the learning methods em-
ployed a single learning agent with the evaluation function
represented by n-tuple networks. As presented in Fig. 3, the
evaluation function was used to assess the utility of possible
moves and thus determined the game-playing policy. However,
each of the following setups used a different way of evaluating
the move and learning the evaluation function values.

1) Q-LEARNING. The evaluation function consists of four
n-tuple networks that provide value functions for each
of the possible game moves: VUP, VRIGHT, VDOWN, VLEFT.
The move evaluation involves evaluating each action
independently, while learning was realized by the Q-

Algorithm Best winning rate Best total score CPU time [s]

Q-LEARNING 0.4980± 0.0078 20504.6± 163.5 3136.8± 61.7

TD-STATE 0.8672± 0.0122 48929.6± 702.5 24334.7± 405.7

TD-AFTERSTATE 0.9062± 0.0051 51320.9± 358.4 7967.5± 165.3

Table II: Summary of the results obtained after 500 000 train-
ing games by the three temporal difference learning methods.

LEARNING algorithm (cf. Fig. 4).
2) TD-STATE. A single n-tuple network acts as the state

value function V (s). It is used to evaluate all possible
states resulting from the given move. The move evalua-
tion requires knowledge of the transition probabilities
and the reward function. The learning algorithm is
straightforward TD(0) as shown in Fig. 5.

3) TD-AFTERSTATE. A single n-tuple network is employed
as the afterstate value function V (s′) to assess the deter-
ministic results of making the given action. The learning
step is performed according to the TD(0) algorithm
adopted to operate on afterstates (cf. Fig. 6). Both the
move evaluation and value function learning require
the game model to compute afterstates. On the other
hand, when compared with TD-STATE, the transition
probabilities are not needed.

In each of the considered methods, learning is performed after
each move and consists in adjusting the values of the main-
tained V -functions for particular states or afterstates. Since
each such function is implemented by an n-tuple network, the
adjustment of the form V (s) ← V (s) + α (V (s′)− V (s))
implies the following change of the LUT weights for each
tuple i = 1 . . .m:

∆LUTi
[
index

(
sloci1 , . . . , slocini

)]
= α (f(s′)− f(s)) .

In all the experiments, the weights were initially set to 0.
The only parameter of the learning methods is the learning
rate α — we consider five different values of this parameter,
α ∈ {0.001, 0.0025, 0.005, 0.0075, 0.01}.

3) Performance measures: To evaluate the learning agents
we used the following performance measures:

1) Winning rate ∈ [0, 1] — the fraction of games the agent
won (i.e., reached a 2048-tile) over 1000 games played,

2) Total score, — the total number of points obtained
during the game averaged over 1000 games,

3) Learning time — the CPU time spent on learning the
agent.

B. Results

The results achieved by the the three compared learning
methods with different learning rate settings are shown in
Table I. The first observation is that all the methods are capable
of producing players winning the game 2048 at least from time
to time. However, the differences in performance achieved by
particular methods are significant. Their winning rate ranges
from 0.16 to 0.90, while the average total score varies from
15 322 to 51 320.
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Learning rate
Winning rate Total score

Q-LEARNING TD-STATE TD-AFTERSTATE Q-LEARNING TD-STATE TD-AFTERSTATE

0.0010 0.1672± 0.0262 0.8622± 0.0059 0.8821± 0.0068 15322.34± 322.84 44607.34± 972.77 49246.74± 563.83

0.0025 0.4796± 0.0058 0.8672± 0.0122 0.9062± 0.0051 20453.40± 122.38 48929.66± 702.47 51320.93± 358.42

0.0050 0.4980± 0.0078 0.8660± 0.0120 0.8952± 0.0089 20504.66± 163.48 46838.72± 578.18 48939.73± 722.61

0.0075 0.4658± 0.0090 0.8253± 0.0131 0.8867± 0.0077 19804.91± 226.34 43384.73± 696.03 46423.26± 619.72

0.0100 0.4438± 0.0103 0.8083± 0.0170 0.8601± 0.0090 19314.17± 247.56 41114.58± 523.70 43387.24± 541.70

Table I: Average performances of learning agents after 500 000 training games. ‘±’ precedes half of the width of the 95%
confidence interval.

Q−LEARNING TD−STATE TD−AFTERSTATE
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Total  score

0 125 250 375 500 0 125 250 375 500 0 125 250 375 500

Training games (x 1000)

learning rate (α) 0.0010      0.0025      0.0050      0.0075      0.0100      

Figure 9: Performance of the three learning methods with different learning rates as a function of the number of training games.

The best overall performance is obtained by TD-
AFTERSTATE, which is slightly, but statistically significantly
(t-test with confidence level equal to 0.01), better than TD-
STATE. Although the gap between these two methods is minor,
TD-AFTERSTATE works substantially faster (see Table II). Let
us remind from Section III-C that it is because TD-STATE
evaluates all possible transitions that may result from making
a single move, whereas TD-AFTERSTATE considers only a
single deterministic afterstate. Moreover, Table I shows also
that Q-LEARNING is significantly worse than both TD-STATE
and TD-AFTERSTATE regardless of the learning rate and the
considered performance measure.

To gain more insight into the learning process, we plotted
the performance of learning agents as a function of the number
of training games (see Fig. 9). We can see that the curves of
Q-LEARNING have not yet converged after 500 000 training
games. Although we do not know whether given enough

time Q-LEARNING would finally catch up with the other two
methods, it is clear that even for the best found learning rate
(α = 0.005), it learns slower than its competitors.

Figure 9 reveals also how the learning rate parameter
influences the learning progress. Although higher learning
rates make learning quicker in the beginning, lower values are
better in the long run. For TD-STATE and TD-AFTERSTATE
α = 0.0025 provided the best results, but, according to the
figure, it is possible that α = 0.001 would surpass it during
successive few hundred thousands training games.

V. IMPROVING THE WINNING RATE

In order to improve the winning rate of produced game-
playing policies, we took the lessons learned in the previous
section and conducted another experiment using more compu-
tational resources.
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Figure 10: A network consisting of all possible 2×3 rectangle
tuples (blue) and all possible straight 4-tuples (green). This
network makes use of board symmetry (symmetric sampling),
thus only two n-tuples of each kind are used.

A. Experimental Setup

Since the previous results indicate that TD-AFTERSTATE
with α = 0.0025 is the most effective learning setup, in this
experiment we used solely this method, letting it to train the
agent for 1 million games.

Additionally, to increase the capabilities of the evaluation
function, we improved the architecture of the n-tuple network.
The improvement was twofold. First, we used larger tuples
— apart from straight 4-tuples we added rectangular-shaped
6-tuples (see Fig. 10). Second, we reduced the number of
weights and, at the same time, improved generalization of
the n-tuple network by using symmetric sampling, which
exploits the symmetries of the 2048 board. In symmetric
sampling, a single n-tuple is employed eight times, returning
one value for each possible board rotation and reflection. In
this way, we needed only 2 straight 4-tuples and 2 rectangular-
shaped 6-tuples as depicted in Fig 10. This network contained
2 × 154 + 2 × 156 = 22 882 500 weights — two orders of
magnitude more than the number of weights of the network
used in Section IV.

B. Results

Figure 11 shows the performance of the learning agent for
two types of networks: i) the small, standard one, introduced in
Section IV, and ii) the large, symmetric one, shown in Fig. 10.
Clearly, using the large network results in a higher perfor-
mance. After one million training games, the agents equipped
with the large networks win 97.0% of games on average,
compared with 91.6% of games won by the players using the
small one. The performance gap between the networks is even
more visible when we compare the average total scores. The
large network allowed to obtain the score of 99 916 ± 1290
on average, which is nearly two times more than that obtained
with the small network (52 172± 369).

Let us also analyze how learning of the large network
progresses over time in terms of the average total score. In the
bottom plot of Fig. 11 we can see that after around 100 000
training games, the speed of learning gradually decreases
to start increasing again 200 000 training games later. We

0.0
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Figure 11: TD-AFTERSTATE learning applied to two types of
n-tuple network architectures.

performed a brief analysis to explain these ‘inflection points’
on the learning curve and we found out that after around
350 000 training games, the agents learned how to build
16 384-tiles. This resulted in substantially higher rewards, and
caused the observed increase in learning speed.

Finally, in order to estimate the quality of the single best
agent (in terms of the winning rate) found in this experiment4,
we measured its performance in 1 000 000 games. Its winning
rate was 0.9781, and it scored 100 178 points on average. The
highest score obtained in a single game was equal to 261 526.

VI. DISCUSSION

A. Winning Rate vs. Total Score

The best winning rate we obtained is nearly 0.98. We
suspect, however, that, even with the same evaluation function,
a higher winning rate is possible. Since the goal of the agent is
to maximize the sum of future rewards, it focuses on the total
score performance measure. The agent has not been given any
direct incentive to learn to win the game more often. Naturally,
the winning rate is largely correlated with the total score, what
we could see in Fig. 9 and Fig. 11. We can observe, however,
that at some point of learning, while the total score is still
increasing, the winning rate stays at the same level — see
the learning curves in Fig. 11, for example. This is because a
rational agent prefers to get sometimes the reward of 16 384
rather than to get always the reward of 2048, which would
mean winning the game. A reward scheme providing agents
direct incentives for obtaining a 2048-tile would, presumably,
lead to even higher winning rates.

4The accompanying material for this study (including the best players
found in the experiments) is available online at http://www.cs.put.poznan.pl/
mszubert/projects/2048.html.
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B. Comparison with Search-Based Agents

Although comparing reinforcement learning with other AI
techniques was not the goal of this study, it is interesting to
take a rough look on the existing approaches to the game 2048.
As no published research exists about this game, we fell back
to the reports available on the Internet to find two anonymously
published search-based algorithms developed for 2048 [1].

The first approach relies on minimax game tree search. It
uses alpha-beta pruning, a human-designed static evaluation
function and several hand-tuned parameters. Its winning rate
depends on the time the minimax is allowed to search for the
best move. We checked that, given 100 ms for making a move,
it wins 89% of games, which is a significantly worse result
than that achieved by the best of our agents.

The second method employs expectimax search with the
depth limit of 8 moves, transposition tables, and a heuristic
evaluation function. Reportedly, it is capable of winning the
game in 100% of cases, but this number is based on only
100 games, and thus it may be overestimated. Interestingly,
however, despite an efficient C implementation with some low-
level optimizations, a single game takes as long as 37 minutes,
that is, 6.6 moves per second, on average. Although this may
seem quick in absolute terms, it is approximately 50 000 times
slower than our agent, which completes a single game in just
23 ms, being able to take 330 000 moves per second.

The above brief comparison shows an interesting, albeit fre-
quently observed, trade-off between our learning-based agents
and search-based agents. The former use little computational
power but may require substantial amount of memory to store
the evaluation function, while the latter may require little
memory, but are much more computationally demanding.

C. Lack of Exploration

Let us also point out that we did not employ any explicit
exploration mechanism during the learning. Although we did
some preliminary experiments with ε-greedy exploration [5],
it did not not improve the performance. The exploration is
not needed in this game, as the environment is inherently
stochastic and thus provides sufficiently diversified experience.

VII. CONCLUSIONS

The puzzle game 2048 constitutes a new interesting chal-
lenge for computational intelligence methods. In this study we
have shown that for this stochastic game the TD-AFTERSTATE
learning algorithm equipped with a powerful evaluation func-
tion (n-tuple network) is able to produce agents winning
nearly 98% of games on average. This performance obtained
at 1-ply is comparable with the performance of the best
computationally-intensive search-based agents.

An important lesson learned from this work is that partic-
ular TDL algorithms, despite working in a similar manner,
may achieve diametrically different performance. Here, the
Q-LEARNING algorithm applied to learn the action value
function was significantly outperformed by TD(0) algorithms.
In particular, learning afterstate values is a viable alternative
for learning state values in stochastic environments where the

agent can compute the immediate effects of its moves, but it
is difficult to obtain the entire state transition.

In a broader perspective, our results demonstrate that n-tuple
networks combined with an appropriate learning algorithm
can work successfully even with millions of weights. Clearly,
this combination has large potential for learning game-playing
policies also for other board games.
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